The purpose of this paper is to give a selective survey on recent progress in random metric theory and its applications to conditional risk measures.This paper includes eight sections.Section 1 is a longer introductio...The purpose of this paper is to give a selective survey on recent progress in random metric theory and its applications to conditional risk measures.This paper includes eight sections.Section 1 is a longer introduction,which gives a brief introduction to random metric theory,risk measures and conditional risk measures.Section 2 gives the central framework in random metric theory,topological structures,important examples,the notions of a random conjugate space and the Hahn-Banach theorems for random linear functionals.Section 3 gives several important representation theorems for random conjugate spaces.Section 4 gives characterizations for a complete random normed module to be random reflexive.Section 5 gives hyperplane separation theorems currently available in random locally convex modules.Section 6 gives the theory of random duality with respect to the locally L0-convex topology and in particular a characterization for a locally L0-convex module to be L0-pre-barreled.Section 7 gives some basic results on L0-convex analysis together with some applications to conditional risk measures.Finally,Section 8 is devoted to extensions of conditional convex risk measures,which shows that every representable L∞-type of conditional convex risk measure and every continuous Lp-type of convex conditional risk measure(1 ≤ p < +∞) can be extended to an L∞F(E)-type of σ,λ(L∞F(E),L1F(E))-lower semicontinuous conditional convex risk measure and an LpF(E)-type of T,λ-continuous conditional convex risk measure(1 ≤ p < +∞),respectively.展开更多
The probabilistic solutions to some nonlinear stochastic dynamic (NSD) systems with various polynomial types of nonlinearities in displacements are analyzed with the subspace-exponential polynomial closure (subspace-E...The probabilistic solutions to some nonlinear stochastic dynamic (NSD) systems with various polynomial types of nonlinearities in displacements are analyzed with the subspace-exponential polynomial closure (subspace-EPC) method. The space of the state variables of the large-scale nonlinear stochastic dynamic system excited by Gaussian white noises is separated into two subspaces. Both sides of the Fokker-Planck-Kolmogorov (FPK) equation corresponding to the NSD system are then integrated over one of the subspaces. The FPK equation for the joint probability density function of the state variables in the other subspace is formulated. Therefore, the FPK equations in low dimensions are obtained from the original FPK equation in high dimensions and the FPK equations in low dimensions are solvable with the exponential polynomial closure method. Examples about multi-degree-offreedom NSD systems with various polynomial types of nonlinearities in displacements are given to show the effectiveness of the subspace-EPC method in these cases.展开更多
We investigate the identification problems of a class of linear stochastic time-delay systems with unknown delayed states in this study. A time-delay system is expressed as a delay differential equation with a single ...We investigate the identification problems of a class of linear stochastic time-delay systems with unknown delayed states in this study. A time-delay system is expressed as a delay differential equation with a single delay in the state vector. We first derive an equivalent linear time-invariant(LTI) system for the time-delay system using a state augmentation technique. Then a conventional subspace identification method is used to estimate augmented system matrices and Kalman state sequences up to a similarity transformation. To obtain a state-space model for the time-delay system, an alternate convex search(ACS) algorithm is presented to find a similarity transformation that takes the identified augmented system back to a form so that the time-delay system can be recovered. Finally, we reconstruct the Kalman state sequences based on the similarity transformation. The time-delay system matrices under the same state-space basis can be recovered from the Kalman state sequences and input-output data by solving two least squares problems. Numerical examples are to show the effectiveness of the proposed method.展开更多
基金supported by National Natural Science Foundation of China (Grant No.10871016)
文摘The purpose of this paper is to give a selective survey on recent progress in random metric theory and its applications to conditional risk measures.This paper includes eight sections.Section 1 is a longer introduction,which gives a brief introduction to random metric theory,risk measures and conditional risk measures.Section 2 gives the central framework in random metric theory,topological structures,important examples,the notions of a random conjugate space and the Hahn-Banach theorems for random linear functionals.Section 3 gives several important representation theorems for random conjugate spaces.Section 4 gives characterizations for a complete random normed module to be random reflexive.Section 5 gives hyperplane separation theorems currently available in random locally convex modules.Section 6 gives the theory of random duality with respect to the locally L0-convex topology and in particular a characterization for a locally L0-convex module to be L0-pre-barreled.Section 7 gives some basic results on L0-convex analysis together with some applications to conditional risk measures.Finally,Section 8 is devoted to extensions of conditional convex risk measures,which shows that every representable L∞-type of conditional convex risk measure and every continuous Lp-type of convex conditional risk measure(1 ≤ p < +∞) can be extended to an L∞F(E)-type of σ,λ(L∞F(E),L1F(E))-lower semicontinuous conditional convex risk measure and an LpF(E)-type of T,λ-continuous conditional convex risk measure(1 ≤ p < +∞),respectively.
文摘The probabilistic solutions to some nonlinear stochastic dynamic (NSD) systems with various polynomial types of nonlinearities in displacements are analyzed with the subspace-exponential polynomial closure (subspace-EPC) method. The space of the state variables of the large-scale nonlinear stochastic dynamic system excited by Gaussian white noises is separated into two subspaces. Both sides of the Fokker-Planck-Kolmogorov (FPK) equation corresponding to the NSD system are then integrated over one of the subspaces. The FPK equation for the joint probability density function of the state variables in the other subspace is formulated. Therefore, the FPK equations in low dimensions are obtained from the original FPK equation in high dimensions and the FPK equations in low dimensions are solvable with the exponential polynomial closure method. Examples about multi-degree-offreedom NSD systems with various polynomial types of nonlinearities in displacements are given to show the effectiveness of the subspace-EPC method in these cases.
文摘We investigate the identification problems of a class of linear stochastic time-delay systems with unknown delayed states in this study. A time-delay system is expressed as a delay differential equation with a single delay in the state vector. We first derive an equivalent linear time-invariant(LTI) system for the time-delay system using a state augmentation technique. Then a conventional subspace identification method is used to estimate augmented system matrices and Kalman state sequences up to a similarity transformation. To obtain a state-space model for the time-delay system, an alternate convex search(ACS) algorithm is presented to find a similarity transformation that takes the identified augmented system back to a form so that the time-delay system can be recovered. Finally, we reconstruct the Kalman state sequences based on the similarity transformation. The time-delay system matrices under the same state-space basis can be recovered from the Kalman state sequences and input-output data by solving two least squares problems. Numerical examples are to show the effectiveness of the proposed method.