期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
随机组合模型中夸克动量分数的随机抽样问题
1
作者 赖晓平 方海平 谢去病 《高能物理与核物理》 SCIE CAS CSCD 北大核心 1991年第12期1069-1075,共7页
本文简要介绍了e^+e^-湮没成强子喷注的物理图象,引入了随机夸克组合模型中夸克动量分数的分布,重点从数学上严格推导了这一分布的抽样方法。
关键词 强子化 随机组合模型 夸克动量分数
原文传递
基于小波分析的组合随机模型及其在径流预测中的应用 被引量:12
2
作者 王文圣 李跃清 向红莲 《高原气象》 CSCD 北大核心 2004年第z1期146-149,共4页
提出了一种随机组合预测模型: 利用Mallat算法对水文时间序列进行多尺度分解, 得到对应尺度下的概貌(低频)分量和细节(高频)分量; 分别对概貌分量和细节分量建立随机模型进行预测, 预测结果的叠加即为原水文变量的预测。将该模型用于黄... 提出了一种随机组合预测模型: 利用Mallat算法对水文时间序列进行多尺度分解, 得到对应尺度下的概貌(低频)分量和细节(高频)分量; 分别对概貌分量和细节分量建立随机模型进行预测, 预测结果的叠加即为原水文变量的预测。将该模型用于黄河三门峡站年径流预测中, 并与传统预测模型进行了对比分析, 结果表明, 建立的组合模型充分利用了现有信息, 预测精度高。 展开更多
关键词 小波分析 MALLAT算法 组合随机模型 年径流预测
下载PDF
基于小波变换的组合随机模型及其在径流随机模拟中的应用 被引量:10
3
作者 衡彤 王文圣 +1 位作者 李拉丁 丁晶 《水电能源科学》 2002年第1期15-17,共3页
首先对原始水文序列施行 A Trous小波分解 ,得到各分过程 ;再对分过程进行分析与识别 ,确定它们所具有的主要成分 ;然后分别建立适当的随机模型 ;最后运用 A Trous重构算法得到原水文序列的组合随机模型。以屏山站年径流过程为例进行随... 首先对原始水文序列施行 A Trous小波分解 ,得到各分过程 ;再对分过程进行分析与识别 ,确定它们所具有的主要成分 ;然后分别建立适当的随机模型 ;最后运用 A Trous重构算法得到原水文序列的组合随机模型。以屏山站年径流过程为例进行随机模拟研究 ,结果表明该法概念清晰 ,结构简单 。 展开更多
关键词 小波分析 分解 组合随机模型 年径流 随机模拟
下载PDF
基于非线性组合优化的信息系统模块选择决策模型 被引量:1
4
作者 蔡永明 宋磊 《统计与决策》 CSSCI 北大核心 2010年第19期4-7,共4页
在面向服务架构的软件设计思想下,用户需要从IT服务提供商的通用模块中选择适合自己需要的功能模块组合。文章以企业投资成本最小化为目标,建立了以企业部门需求满足率为随机约束条件的组合优化模型,寻求最佳模块组合结构;用Lagrangian... 在面向服务架构的软件设计思想下,用户需要从IT服务提供商的通用模块中选择适合自己需要的功能模块组合。文章以企业投资成本最小化为目标,建立了以企业部门需求满足率为随机约束条件的组合优化模型,寻求最佳模块组合结构;用Lagrangian启发式松弛算法将模型确定化、线性化、最后化简为"判断-赋值"模型,并给出详细的迭代解法。最终的结果是在特定的服务满足率条件下,企业投资成本最小的模块组合。文章按用友ERP-U8报价基础数据计算得出了企业特定需求下的功能模块选择策略,验证了算法的可行性和有效性。 展开更多
关键词 IS模块选择 随机约束条件的组合优化模型 Lagrangian启发式松弛算法
下载PDF
Traffic flow prediction of urban road network based on LSTM-RF model 被引量:3
5
作者 ZHAO Shu-xu ZHANG Bao-hua 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2020年第2期135-142,共8页
Traffic flow prediction,as the basis of signal coordination and travel time prediction,has become a research point in the field of transportation.For traffic flow prediction,researchers have proposed a variety of meth... Traffic flow prediction,as the basis of signal coordination and travel time prediction,has become a research point in the field of transportation.For traffic flow prediction,researchers have proposed a variety of methods,but most of these methods only use the time domain information of traffic flow data to predict the traffic flow,ignoring the impact of spatial correlation on the prediction of target road segment flow,which leads to poor prediction accuracy.In this paper,a traffic flow prediction model called as long short time memory and random forest(LSTM-RF)was proposed based on the combination model.In the process of traffic flow prediction,the long short time memory(LSTM)model was used to extract the time sequence features of the predicted target road segment.Then,the predicted value of LSTM and the collected information of adjacent upstream and downstream sections were simultaneously used as the input features of the random forest model to analyze the spatial-temporal correlation of traffic flow,so as to obtain the final prediction results.The traffic flow data of 132 urban road sections collected by the license plate recognition system in Guiyang City were tested and verified.The results show that the method is better than the single model in prediction accuracy,and the prediction error is obviously reduced compared with the single model. 展开更多
关键词 traffic flow prediction long short time memory and random forest(LSTM-RF)model random forest combination model spatial-temporal correlation
下载PDF
Dynamic Portfolio Choice under Uncertainty about Asset Return Model
6
作者 何朝林 孟卫东 《Journal of Donghua University(English Edition)》 EI CAS 2009年第6期645-650,共6页
The effect of uncertainty about stochastic diffusion model on dynamic portfolio choice of an investor who maximizes utility of terminal portfolio wealth was studied.It applied stochastic control method to obtain the c... The effect of uncertainty about stochastic diffusion model on dynamic portfolio choice of an investor who maximizes utility of terminal portfolio wealth was studied.It applied stochastic control method to obtain the closed-form solution of optimal dynamic portfolio,and used the Bayesian rule to estimate the model parameters to do an empirical study on two different samples of Shanghai Exchange Composite Index.Results show,model uncertainty results in positive or negative hedging demand of portfolio,which depends on investor's attitude toward risk;the effect of model uncertainty is more significant with the increasing of investment horizon,the decreasing of investor's risk-aversion degree,and the decreasing of information;predictability of risky asset return increases its allocation in portfolio,at the same time,the effect of model uncertainty also strengthens. 展开更多
关键词 dynamic portfolio model uncertainty estimation risk Bayesian analysis
下载PDF
Structure condition under initial enlargement of filtration 被引量:1
7
作者 CHOULLI Tahir DENG Jun 《Science China Mathematics》 SCIE CSCD 2017年第2期301-316,共16页
We address the question of how the structure condition is affected when one possesses some additional information at the very beginning of the investment period.The structure condition represents essentially an altern... We address the question of how the structure condition is affected when one possesses some additional information at the very beginning of the investment period.The structure condition represents essentially an alternative to non-arbitrage conditions for the Markowitz’s portfolio optimization framework,and is crucial for the existence of the optimal portfolio in quadratic utility settings.Herein,we provide practical assumption on the initial market model and the additional information to preserve the structure condition.The stochastic tools that drive this result are a generalization of the Lazaro-Yor representation by Lazaro and Yor(1978)and optional stochastic integral. 展开更多
关键词 structure condition initial enlargement of filtration optional stochastic integral
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部