期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
统计实验方法浅析
1
作者 吴霖芳 《闽江学院学报》 2002年第6期14-15,40,共3页
随着计算机的产生 ,许多的实际问题都借用计算机来解决 ,从中产生了计算方法 ,概率统计法就是其中的一种。本文把握概率统计法的基本思想是 :根据所要解决的问题设计模型 ,使这个模型的某个模型恰好就是所要计算的量 ,而这个特征值可以... 随着计算机的产生 ,许多的实际问题都借用计算机来解决 ,从中产生了计算方法 ,概率统计法就是其中的一种。本文把握概率统计法的基本思想是 :根据所要解决的问题设计模型 ,使这个模型的某个模型恰好就是所要计算的量 ,而这个特征值可以通过实验方法求出。本文针对不同形式的随机变量设计模型 ,进行随机变量的模拟 。 展开更多
关键词 统计实验方法 随机变量 特征 模型
下载PDF
基于小波和Radon变换的桥梁裂缝检测 被引量:16
2
作者 魏武 王俊杰 蔡钊雄 《计算机工程与设计》 CSCD 北大核心 2013年第9期3151-3157,共7页
为提高桥梁裂缝检测效率,提出了一种新型的桥梁裂缝检测方法。针对桥梁表面图像具有噪声污点干扰进行预处理,先后用中值滤波和频域滤波有效的减弱了噪点干扰并加强了裂缝区域;针对裂缝处的纹理特点,用小波变换突出图像的纹理特征,计算... 为提高桥梁裂缝检测效率,提出了一种新型的桥梁裂缝检测方法。针对桥梁表面图像具有噪声污点干扰进行预处理,先后用中值滤波和频域滤波有效的减弱了噪点干扰并加强了裂缝区域;针对裂缝处的纹理特点,用小波变换突出图像的纹理特征,计算小波高频段的高幅值系数占比,即高幅小波系数比(HAWCP),高频能量比(HFEP),Radon变换最大值和概率统计参数作为特征值,这些特征值的结合有很好的区分度和容错能力;将误差反向传播算法多层前向神经网络作为桥梁裂缝分类器,并且只用9次迭代既能完成训练,分类效率高。实验结果表明,提出的方法对桥梁裂缝的识别率高(超过95%),泛化能力强。 展开更多
关键词 桥梁裂缝检测 小波系数 拉冬变换 随机统计特征 特征融合 人工神经网络
下载PDF
Prestack seismic stochastic inversion based on statistical characteristic parameters 被引量:3
3
作者 Wang Bao-Li Lin Ying +1 位作者 Zhang Guang-Zhi Yin Xing-Yao 《Applied Geophysics》 SCIE CSCD 2021年第1期63-74,129,共13页
In the conventional stochastic inversion method,the spatial structure information of underground strata is usually characterized by variograms.However,effectively characterizing the heterogeneity of complex strata is ... In the conventional stochastic inversion method,the spatial structure information of underground strata is usually characterized by variograms.However,effectively characterizing the heterogeneity of complex strata is difficult.In this paper,multiple parameters are used to fully explore the underground formation information in the known seismic reflection and well log data.The spatial structure characteristics of complex underground reservoirs are described more comprehensively using multiple statistical characteristic parameters.We propose a prestack seismic stochastic inversion method based on prior information on statistical characteristic parameters.According to the random medium theory,this method obtains several statistical characteristic parameters from known seismic and logging data,constructs a prior information model that meets the spatial structure characteristics of the underground strata,and integrates multiparameter constraints into the likelihood function to construct the objective function.The very fast quantum annealing algorithm is used to optimize and update the objective function to obtain the fi nal inversion result.The model test shows that compared with the traditional prior information model construction method,the prior information model based on multiple parameters in this paper contains more detailed stratigraphic information,which can better describe complex underground reservoirs.A real data analysis shows that the stochastic inversion method proposed in this paper can effectively predict the geophysical characteristics of complex underground reservoirs and has a high resolution. 展开更多
关键词 prior information random medium theory statistical characteristic parameters stochastic inversion very fast quantum annealing
下载PDF
Statistical Characteristics of the Received Signal for Stochastic Surface Models
4
作者 Alexander V Ksendzuk 《Geo-Spatial Information Science》 2002年第1期22-27,共6页
This paper describes the stochastic model of the scattered electromagnetic field.Unlike common_used functional_determined models the proposed is characterised by amplitude/phase fluctuation of the received signal.This... This paper describes the stochastic model of the scattered electromagnetic field.Unlike common_used functional_determined models the proposed is characterised by amplitude/phase fluctuation of the received signal.This paper derives the statistical characteristic of the input signal and describes algorithm for its estimation in post_processing and real_time processing modes.Achieved characteristics allow the mapping and estimation of the surface models more accurate,moreover,such processing increase space resolution of synthetic aperture radar. 展开更多
关键词 SAR surface model statistical characteristics ESTIMATION
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部