To avoid the aerodynamic performance loss of airfoil at non-design state which often appears in single point design optimization, and to improve the adaptability to the uncertain factors in actual flight environment, ...To avoid the aerodynamic performance loss of airfoil at non-design state which often appears in single point design optimization, and to improve the adaptability to the uncertain factors in actual flight environment, a two-dimensional stochastic airfoil optimization design method based on neural networks is presented. To provide highly efficient and credible analysis, four BP neural networks are built as surrogate models to predict the airfoil aerodynamic coefficients and geometry parameter. These networks are combined with the probability density function obeying normal distribution and the genetic algorithm, thus forming an optimization design method. Using the method, for GA(W)-2 airfoil, a stochastic optimization is implemented in a two-dimensional flight area about Mach number and angle of attack. Compared with original airfoil and single point optimization design airfoil, results show that the two-dimensional stochastic method can improve the performance in a specific flight area, and increase the airfoil adaptability to the stochastic changes of multiple flight parameters.展开更多
文摘To avoid the aerodynamic performance loss of airfoil at non-design state which often appears in single point design optimization, and to improve the adaptability to the uncertain factors in actual flight environment, a two-dimensional stochastic airfoil optimization design method based on neural networks is presented. To provide highly efficient and credible analysis, four BP neural networks are built as surrogate models to predict the airfoil aerodynamic coefficients and geometry parameter. These networks are combined with the probability density function obeying normal distribution and the genetic algorithm, thus forming an optimization design method. Using the method, for GA(W)-2 airfoil, a stochastic optimization is implemented in a two-dimensional flight area about Mach number and angle of attack. Compared with original airfoil and single point optimization design airfoil, results show that the two-dimensional stochastic method can improve the performance in a specific flight area, and increase the airfoil adaptability to the stochastic changes of multiple flight parameters.