For a physics system which exhibits memory,if memory is preserved only at points of random self-similar fractals,we define random memory functions and give the connection between the expectation of flux and the fracti...For a physics system which exhibits memory,if memory is preserved only at points of random self-similar fractals,we define random memory functions and give the connection between the expectation of flux and the fractional integral.In particular,when memory sets degenerate to Cantor type fractals or non-random self-similar fractals our results coincide with that of Nigmatullin and Ren et al.展开更多
I.i.d. random sequence is the simplest but very basic one in stochastic processes, and statistically self-similar set is the simplest but very basic one in random recursive sets in the theory of random fractal. Is the...I.i.d. random sequence is the simplest but very basic one in stochastic processes, and statistically self-similar set is the simplest but very basic one in random recursive sets in the theory of random fractal. Is there any relation between i.i.d. random sequence and statistically self-similar set? This paper gives a basic theorem which tells us that the random recursive set generated by a collection of i.i.d. statistical contraction operators is always a statistically self-similar set.展开更多
文摘For a physics system which exhibits memory,if memory is preserved only at points of random self-similar fractals,we define random memory functions and give the connection between the expectation of flux and the fractional integral.In particular,when memory sets degenerate to Cantor type fractals or non-random self-similar fractals our results coincide with that of Nigmatullin and Ren et al.
基金Project supported by the National Natural Science Foundation of China the Doctoral Progamme Foundation of China and the Foundation of Wuhan University.
文摘I.i.d. random sequence is the simplest but very basic one in stochastic processes, and statistically self-similar set is the simplest but very basic one in random recursive sets in the theory of random fractal. Is there any relation between i.i.d. random sequence and statistically self-similar set? This paper gives a basic theorem which tells us that the random recursive set generated by a collection of i.i.d. statistical contraction operators is always a statistically self-similar set.