Let (X, Xk : k ≥ 1) be a sequence of extended negatively dependent random variables with a common distribution F satisfying EX 〉 0.Let τ be a nonnegative integer-valued random variable, independent of {X, Xk :...Let (X, Xk : k ≥ 1) be a sequence of extended negatively dependent random variables with a common distribution F satisfying EX 〉 0.Let τ be a nonnegative integer-valued random variable, independent of {X, Xk : k ≥ 1}. In this paper, the authors obtain the necessary and sufficient conditions for the random sums Sτ=∑n=1^τ Xn to have a consistently varying tail when the random number τ has a heavier tail than the summands, i.e.,P(X〉x)/P(τ〉x)→0 as x →∞.展开更多
Classical Kolmogorov's and Rosenthal's inequalities for the maximum partial sums of random variables are basic tools for studying the strong laws of large numbers.In this paper,motived by the notion of indepen...Classical Kolmogorov's and Rosenthal's inequalities for the maximum partial sums of random variables are basic tools for studying the strong laws of large numbers.In this paper,motived by the notion of independent and identically distributed random variables under the sub-linear expectation initiated by Peng(2008),we introduce the concept of negative dependence of random variables and establish Kolmogorov's and Rosenthal's inequalities for the maximum partial sums of negatively dependent random variables under the sub-linear expectations.As an application,we show that Kolmogorov's strong law of larger numbers holds for independent and identically distributed random variables under a continuous sub-linear expectation if and only if the corresponding Choquet integral is finite.展开更多
Consider a sequence of negatively associated and identically distributed random variableswith the underlying distribution in the domain of attraction of a stable distribution with an exponentin(0,2).A Chover's law...Consider a sequence of negatively associated and identically distributed random variableswith the underlying distribution in the domain of attraction of a stable distribution with an exponentin(0,2).A Chover's law of the iterated logarithm is established for negatively associated randomvariables.Our results generalize and improve those on Chover's law of the iterated logarithm(LIL)type behavior previously obtained by Mikosch(1984),Vasudeva(1984),and Qi and Cheng(1996)fromthe i.i.d,case to NA sequences.展开更多
基金Supported by the National Natural Science Foundation of China(11201004 and 11271020)the Key Project of Chinese Ministry of Education(211077)the Anhui Provincial Natural Science Foundation(10040606Q30 and 1208085MA11)
基金Supported by the National Natural Science Foundation of China(10661006)the Support Program of New Century Guangxi Ten-hundred-thousand Talents Project(2005214)the Guangxi Science Foundation(0728212)
基金supported by the Humanities and Social Sciences Foundation for the Youth Scholars of Ministry of Education of China(No.15YJCZH066)the Science and Technology Plan Project of Hunan Province(No.2016TP1020)+4 种基金the Science and Technology Plan Project of Hengyang City(No.2017KJ183)the Construct Program of the Key Discipline in Hunan Province and University Students Research and Innovation Experiment Project of Hunan Province(No.C1718)the Scientific Research Fund of Hunan Provincial Education Department(No.17A030)Hunan Provincial Natural Science Foundation of China(No.2018JJ4024)the 2018 National Statistical Science Research Project of China(No.2018LY05)
基金Project supported by the National Natural Science Foundation of China(No.11071182)
文摘Let (X, Xk : k ≥ 1) be a sequence of extended negatively dependent random variables with a common distribution F satisfying EX 〉 0.Let τ be a nonnegative integer-valued random variable, independent of {X, Xk : k ≥ 1}. In this paper, the authors obtain the necessary and sufficient conditions for the random sums Sτ=∑n=1^τ Xn to have a consistently varying tail when the random number τ has a heavier tail than the summands, i.e.,P(X〉x)/P(τ〉x)→0 as x →∞.
基金supported by National Natural Science Foundation of China(Grant No.11225104)the Fundamental Research Funds for the Central Universities
文摘Classical Kolmogorov's and Rosenthal's inequalities for the maximum partial sums of random variables are basic tools for studying the strong laws of large numbers.In this paper,motived by the notion of independent and identically distributed random variables under the sub-linear expectation initiated by Peng(2008),we introduce the concept of negative dependence of random variables and establish Kolmogorov's and Rosenthal's inequalities for the maximum partial sums of negatively dependent random variables under the sub-linear expectations.As an application,we show that Kolmogorov's strong law of larger numbers holds for independent and identically distributed random variables under a continuous sub-linear expectation if and only if the corresponding Choquet integral is finite.
基金supported by the National Natural Science Foundation of China under Grant No.10661006the Support Program of the New Century Guangxi China Ten-Hundred-Thousand Talents Project under Grant No.2005214the Guangxi, China Science Foundation under Grant No.2010GXNSFA013120
文摘Consider a sequence of negatively associated and identically distributed random variableswith the underlying distribution in the domain of attraction of a stable distribution with an exponentin(0,2).A Chover's law of the iterated logarithm is established for negatively associated randomvariables.Our results generalize and improve those on Chover's law of the iterated logarithm(LIL)type behavior previously obtained by Mikosch(1984),Vasudeva(1984),and Qi and Cheng(1996)fromthe i.i.d,case to NA sequences.