The nonlinear Schrdinger equation is one of the basic models for nonlinear waves.In some circumstances,randomness has to be taken into account and it often occurs through a random potential.Here,we consider the foll...The nonlinear Schrdinger equation is one of the basic models for nonlinear waves.In some circumstances,randomness has to be taken into account and it often occurs through a random potential.Here,we consider the following展开更多
In this work, by means of a new more general ansatz and the symbolic computation system Maple, we extend the Riccati equation rational expansion method [Chaos, Solitons & Fractals 25 (2005) 1019] to uniformly const...In this work, by means of a new more general ansatz and the symbolic computation system Maple, we extend the Riccati equation rational expansion method [Chaos, Solitons & Fractals 25 (2005) 1019] to uniformly construct a series of stochastic nontravelling wave solutions for nonlinear stochastic evolution equation. To illustrate the effectiveness of our method, we take the stochastic mKdV equation as an example, and successfully construct some new and more general solutions including a series of rational formal nontraveling wave and coefficient functions' soliton-like solution.s and trigonometric-like function solutions. The method can also be applied to solve other nonlinear stochastic evolution equation or equations.展开更多
A model of nonlinear differential systems with impulsive effect on random moments is considered. The extensions of qualitative analysis of the model is mainly focused on and three modified sufficient conditions are pr...A model of nonlinear differential systems with impulsive effect on random moments is considered. The extensions of qualitative analysis of the model is mainly focused on and three modified sufficient conditions are presented about p-moment boundedness in the process by Liapunov method with nonlinear item dependent on the impulsive effects, which may gain wider use in industrial engineering, physics, etc. At last, an example is given to show an theoretical application of the obtained results.展开更多
We study a class of discounted models of singular stochastic control. In thiskind of models, not only the structure of cost function has been extended to some general type, butalso the state can be represented as the ...We study a class of discounted models of singular stochastic control. In thiskind of models, not only the structure of cost function has been extended to some general type, butalso the state can be represented as the solution of a class of stochastic differential equationswith nonlinear drift and diffusion term. By the various methods of stochastic analysis, we derivethe sufficient and necessary conditions of the existence of optimal control.展开更多
This paper discusses the H∞ control problem for a class of linear stochastic systems driven by both Brownian motion and Poisson jumps. The authors give the basic theory about stabilities for such systems, including i...This paper discusses the H∞ control problem for a class of linear stochastic systems driven by both Brownian motion and Poisson jumps. The authors give the basic theory about stabilities for such systems, including internal stability and external stability, which enables to prove the bounded real lemma for the systems. By means of Riccati equations, infinite horizon linear stochastic state-feedback H∞ control design is also extended to such systems.展开更多
We introduce a new type of path-dependent quasi-linear parabolic PDEs in which the continuous paths on an interval [0, t] become the basic variables in the place of classical variables (t, x) ∈[0, T]× R^d. Thi...We introduce a new type of path-dependent quasi-linear parabolic PDEs in which the continuous paths on an interval [0, t] become the basic variables in the place of classical variables (t, x) ∈[0, T]× R^d. This new type of PDEs are formulated through a classical BSDE in which the terminal values and the generators are allowed to be general function of Brownian motion paths. In this way, we establish the nonlinear Feynman- Kac formula for a general non-Markoviau BSDE. Some main properties of solutions of this new PDEs are also obtained.展开更多
Using Girsanov transformation,we derive a new link from stochastic differential equations of Markovian type to nonlinear parabolic equations of Burgers-KPZ type,in such a manner that the obtained BurgersKPZ equation c...Using Girsanov transformation,we derive a new link from stochastic differential equations of Markovian type to nonlinear parabolic equations of Burgers-KPZ type,in such a manner that the obtained BurgersKPZ equation characterizes the path-independence property of the density process of Girsanov transformation for the stochastic differential equation.Our assertion also holds for SDEs on a connected differential manifold.展开更多
We represent the exponential moment of the Brownian functionals under a nonlinear expectation according to the solution to a backward stochastic differential equation.As an application,we establish a large deviation p...We represent the exponential moment of the Brownian functionals under a nonlinear expectation according to the solution to a backward stochastic differential equation.As an application,we establish a large deviation principle of the Freidlin and Wentzell type under the corresponding nonlinear probability for diffusion processes with a small diffusion coefficient.展开更多
Langevin equation is widely used to study the stochastic effects in molecular networks, as it often approximates well the underlying chemical master equation. However, frequently it is not clear when such an approxima...Langevin equation is widely used to study the stochastic effects in molecular networks, as it often approximates well the underlying chemical master equation. However, frequently it is not clear when such an approximation is applicable and when it breaks down. This paper studies the simple Schnakenberg model consisting of three reversible reactions and two molecular species whose concentrations vary. To reduce the residual errors from the conventional formulation of the Langevin equation, the authors propose to explicitly model the effective coupling between macroscopic concentrations of different molecular species. The results show that this formulation is effective in correcting residual errors from the original uncoupled Langevin equation and can approximate the underlying chemical master equation very accurately.展开更多
The optimal filter 7r = {π,t ∈ [0, T]} of a stochastic signal is approximated by a sequence {Try} of measure-valued processes defined by branching particle systems in a random environment (given by the observation ...The optimal filter 7r = {π,t ∈ [0, T]} of a stochastic signal is approximated by a sequence {Try} of measure-valued processes defined by branching particle systems in a random environment (given by the observation process). The location and weight of each particle are governed by stochastic differential equations driven by the observation process, which is common for all particles, as well as by an individual Brownian motion, which applies to this specific particle only. The branching mechanism of each particle depends on the observation process and the path of this particle itself during its short lifetime δ = n-2α, where n is the number of initial particles and ~ is a fixed parameter to be optimized. As n → ∞, we prove the convergence of π to πt uniformly for t ∈ [0, T]. Compared with the available results in the literature, the main contribution of this article is that the approximation is free of any stochastic integral which makes the numerical implementation readily available.展开更多
基金This work was partially supported by Science Foundation of CAEP.
文摘The nonlinear Schrdinger equation is one of the basic models for nonlinear waves.In some circumstances,randomness has to be taken into account and it often occurs through a random potential.Here,we consider the following
基金The author would like to thank the referees very much for their careful reading of the manuscript and many valuable suggestions.
文摘In this work, by means of a new more general ansatz and the symbolic computation system Maple, we extend the Riccati equation rational expansion method [Chaos, Solitons & Fractals 25 (2005) 1019] to uniformly construct a series of stochastic nontravelling wave solutions for nonlinear stochastic evolution equation. To illustrate the effectiveness of our method, we take the stochastic mKdV equation as an example, and successfully construct some new and more general solutions including a series of rational formal nontraveling wave and coefficient functions' soliton-like solution.s and trigonometric-like function solutions. The method can also be applied to solve other nonlinear stochastic evolution equation or equations.
基金The Special Research Funds for Young Col-lege Teacher of Shanghai (No. 355877)
文摘A model of nonlinear differential systems with impulsive effect on random moments is considered. The extensions of qualitative analysis of the model is mainly focused on and three modified sufficient conditions are presented about p-moment boundedness in the process by Liapunov method with nonlinear item dependent on the impulsive effects, which may gain wider use in industrial engineering, physics, etc. At last, an example is given to show an theoretical application of the obtained results.
基金This research is supported by the National Natural Science Foundation of China
文摘We study a class of discounted models of singular stochastic control. In thiskind of models, not only the structure of cost function has been extended to some general type, butalso the state can be represented as the solution of a class of stochastic differential equationswith nonlinear drift and diffusion term. By the various methods of stochastic analysis, we derivethe sufficient and necessary conditions of the existence of optimal control.
基金supported by the National Natural Science Foundation of China under Grant Nos.60874032 and 70971079
文摘This paper discusses the H∞ control problem for a class of linear stochastic systems driven by both Brownian motion and Poisson jumps. The authors give the basic theory about stabilities for such systems, including internal stability and external stability, which enables to prove the bounded real lemma for the systems. By means of Riccati equations, infinite horizon linear stochastic state-feedback H∞ control design is also extended to such systems.
基金supported by National Natural Science Foundation of China(Grant No.10921101)the Programme of Introducing Talents of Discipline to Universities of China(Grant No.B12023)the Fundamental Research Funds of Shandong University
文摘We introduce a new type of path-dependent quasi-linear parabolic PDEs in which the continuous paths on an interval [0, t] become the basic variables in the place of classical variables (t, x) ∈[0, T]× R^d. This new type of PDEs are formulated through a classical BSDE in which the terminal values and the generators are allowed to be general function of Brownian motion paths. In this way, we establish the nonlinear Feynman- Kac formula for a general non-Markoviau BSDE. Some main properties of solutions of this new PDEs are also obtained.
基金supported by Laboratory of Mathematics and Complex Systems,National Natural Science Foundation of China(Grant No.11131003)Specialized Research Fund for the Doctoral Program of Higher Educationthe Fundamental Research Funds for the Central Universities
文摘Using Girsanov transformation,we derive a new link from stochastic differential equations of Markovian type to nonlinear parabolic equations of Burgers-KPZ type,in such a manner that the obtained BurgersKPZ equation characterizes the path-independence property of the density process of Girsanov transformation for the stochastic differential equation.Our assertion also holds for SDEs on a connected differential manifold.
基金supported by National Natural Science Foundation of China (Grant No.10921101)WCU program of the Korea Science and Engineering Foundation (Grant No. R31-20007)National Science Foundation of US (Grant No. DMS-0906907)
文摘We represent the exponential moment of the Brownian functionals under a nonlinear expectation according to the solution to a backward stochastic differential equation.As an application,we establish a large deviation principle of the Freidlin and Wentzell type under the corresponding nonlinear probability for diffusion processes with a small diffusion coefficient.
文摘Langevin equation is widely used to study the stochastic effects in molecular networks, as it often approximates well the underlying chemical master equation. However, frequently it is not clear when such an approximation is applicable and when it breaks down. This paper studies the simple Schnakenberg model consisting of three reversible reactions and two molecular species whose concentrations vary. To reduce the residual errors from the conventional formulation of the Langevin equation, the authors propose to explicitly model the effective coupling between macroscopic concentrations of different molecular species. The results show that this formulation is effective in correcting residual errors from the original uncoupled Langevin equation and can approximate the underlying chemical master equation very accurately.
基金supported by US National Science Foundation(Grant No. DMS-0906907)
文摘The optimal filter 7r = {π,t ∈ [0, T]} of a stochastic signal is approximated by a sequence {Try} of measure-valued processes defined by branching particle systems in a random environment (given by the observation process). The location and weight of each particle are governed by stochastic differential equations driven by the observation process, which is common for all particles, as well as by an individual Brownian motion, which applies to this specific particle only. The branching mechanism of each particle depends on the observation process and the path of this particle itself during its short lifetime δ = n-2α, where n is the number of initial particles and ~ is a fixed parameter to be optimized. As n → ∞, we prove the convergence of π to πt uniformly for t ∈ [0, T]. Compared with the available results in the literature, the main contribution of this article is that the approximation is free of any stochastic integral which makes the numerical implementation readily available.