本文讨论非线性Klein-Gordon 方程的混合问题{u(■)—△u+u=F(u,Du,D_xDu) (t,x)∈(0,T)×Ωu(0,x)=h(x) u_t(0,x)=g(x),x∈Ω■u/■v=0■在F(u,Du,D_xDu)≥p sum from i=1 to n u_(X_i)~2+qu_t^2+u 这里(p>0,q>0) 及■_■■^...本文讨论非线性Klein-Gordon 方程的混合问题{u(■)—△u+u=F(u,Du,D_xDu) (t,x)∈(0,T)×Ωu(0,x)=h(x) u_t(0,x)=g(x),x∈Ω■u/■v=0■在F(u,Du,D_xDu)≥p sum from i=1 to n u_(X_i)~2+qu_t^2+u 这里(p>0,q>0) 及■_■■^(ph)(x)×g(x)dx>0时,得到该问题的解在有限时间内爆破.展开更多
文摘本文讨论非线性Klein-Gordon 方程的混合问题{u(■)—△u+u=F(u,Du,D_xDu) (t,x)∈(0,T)×Ωu(0,x)=h(x) u_t(0,x)=g(x),x∈Ω■u/■v=0■在F(u,Du,D_xDu)≥p sum from i=1 to n u_(X_i)~2+qu_t^2+u 这里(p>0,q>0) 及■_■■^(ph)(x)×g(x)dx>0时,得到该问题的解在有限时间内爆破.