基于拟层流风波生成机制建立的随机Fourier海浪模型,采用概率密度演化理论研究了近海风力发电高塔在随机波浪作用下的动力响应问题,给出了结构响应概率密度函数的时间演化过程、概率密度等值线图及其均值和标准差。其中随机波浪力由线...基于拟层流风波生成机制建立的随机Fourier海浪模型,采用概率密度演化理论研究了近海风力发电高塔在随机波浪作用下的动力响应问题,给出了结构响应概率密度函数的时间演化过程、概率密度等值线图及其均值和标准差。其中随机波浪力由线性波浪理论和M orison公式计算。结果表明,概率密度演化方法可以获得结构波浪动力响应的时变概率密度函数和等概率密度响应轨迹。据此计算的均值及标准差与M on te C arlo计算结果吻合较好。展开更多
A physical random function model of ground motions for engineering purposes is presented with verification of sample level. Firstly,we derive the Fourier spectral transfer form of the solution to the definition proble...A physical random function model of ground motions for engineering purposes is presented with verification of sample level. Firstly,we derive the Fourier spectral transfer form of the solution to the definition problem,which describes the one-dimensional seismic wave field. Then based on the special models of the source,path and local site,the physical random function model of ground motions is obtained whose physical parameters are random variables. The superposition method of narrow-band harmonic wave groups is improved to synthesize ground motion samples. Finally,an application of this model to simulate ground motion records in 1995 Kobe earthquake is described. The resulting accelerograms have the frequencydomain and non-stationary characteristics that are in full agreement with the realistic ground motion records.展开更多
文摘基于拟层流风波生成机制建立的随机Fourier海浪模型,采用概率密度演化理论研究了近海风力发电高塔在随机波浪作用下的动力响应问题,给出了结构响应概率密度函数的时间演化过程、概率密度等值线图及其均值和标准差。其中随机波浪力由线性波浪理论和M orison公式计算。结果表明,概率密度演化方法可以获得结构波浪动力响应的时变概率密度函数和等概率密度响应轨迹。据此计算的均值及标准差与M on te C arlo计算结果吻合较好。
基金supported by the Funds for Creative Research Groups of China (Grant No.50621062)
文摘A physical random function model of ground motions for engineering purposes is presented with verification of sample level. Firstly,we derive the Fourier spectral transfer form of the solution to the definition problem,which describes the one-dimensional seismic wave field. Then based on the special models of the source,path and local site,the physical random function model of ground motions is obtained whose physical parameters are random variables. The superposition method of narrow-band harmonic wave groups is improved to synthesize ground motion samples. Finally,an application of this model to simulate ground motion records in 1995 Kobe earthquake is described. The resulting accelerograms have the frequencydomain and non-stationary characteristics that are in full agreement with the realistic ground motion records.