期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于不等概抽样与随机SVD分解的Nyström方法 被引量:1
1
作者 牛成英 任潇潇 闫新宇 《统计与决策》 北大核心 2023年第7期45-51,共7页
对于大规模数据集,Nyström方法是一种较为有效的矩阵低秩逼近技术,旨在从原始数据矩阵中抽取部分列重构原始数据矩阵的低秩逼近矩阵。考虑到不同抽样方法对重构矩阵的精度有较大的影响,文章提出将不等概抽样Nyström方法与随... 对于大规模数据集,Nyström方法是一种较为有效的矩阵低秩逼近技术,旨在从原始数据矩阵中抽取部分列重构原始数据矩阵的低秩逼近矩阵。考虑到不同抽样方法对重构矩阵的精度有较大的影响,文章提出将不等概抽样Nyström方法与随机奇异值分解方法相结合,进而在矩阵重构过程中提高矩阵低秩逼近精度,并有效降低计算复杂度。研究结果表明,提出的Nyström方法在矩阵重构中具有较高的精确度,且可以极大地降低计算复杂度。 展开更多
关键词 Nyström方法 不等概抽样 随机svd分解 精度与计算复杂度
下载PDF
基于不等概自适应抽样和随机SVD分解的CUR矩阵重构
2
作者 任潇潇 牛成英 《数理统计与管理》 北大核心 2024年第2期280-294,共15页
高维大数据矩阵分析中,使用少量主要成分逼近原始数据矩阵是常用方法,这些主要成分是矩阵行和列的线性组合,不易对数据的原始特征进行解释。本文提出将不等概抽样与自适应抽样结合的适用于CUR矩阵分解的抽样方法,并将该抽样方法与矩阵... 高维大数据矩阵分析中,使用少量主要成分逼近原始数据矩阵是常用方法,这些主要成分是矩阵行和列的线性组合,不易对数据的原始特征进行解释。本文提出将不等概抽样与自适应抽样结合的适用于CUR矩阵分解的抽样方法,并将该抽样方法与矩阵随机奇异值分解(SVD)方法相结合,对抽样得到的列矩阵C和行矩阵R进行随机SVD分解,在控制计算复杂度的同时提高低秩逼近重构矩阵的精度。研究结果表明,在矩阵低秩逼近中,基于不等概自适应抽样和随机SVD分解相结合的CUR矩阵分解方法具有较高的精确度和稳定性。 展开更多
关键词 CUR矩阵分解方法 不等概自适应抽样 随机svd分解 相对误差 计算复杂度
原文传递
Random seismic noise attenuation by learning-type overcomplete dictionary based on K-singular value decomposition algorithm 被引量:2
3
作者 XU Dexin HAN Liguo +1 位作者 LIU Dongyu WEI Yajie 《Global Geology》 2016年第1期55-60,共6页
The transformation of basic functions is one of the most commonly used techniques for seismic denoising,which employs sparse representation of seismic data in the transform domain. The choice of transform base functio... The transformation of basic functions is one of the most commonly used techniques for seismic denoising,which employs sparse representation of seismic data in the transform domain. The choice of transform base functions has an influence on denoising results. We propose a learning-type overcomplete dictionary based on the K-singular value decomposition( K-SVD) algorithm. To construct the dictionary and use it for random seismic noise attenuation,we replace fixed transform base functions with an overcomplete redundancy function library. Owing to the adaptability to data characteristics,the learning-type dictionary describes essential data characteristics much better than conventional denoising methods. The sparsest representation of signals is obtained by the learning and training of seismic data. By comparing the same seismic data obtained using the learning-type overcomplete dictionary based on K-SVD and the data obtained using other denoising methods,we find that the learning-type overcomplete dictionary based on the K-SVD algorithm represents the seismic data more sparsely,effectively suppressing the random noise and improving the signal-to-noise ratio. 展开更多
关键词 sparse representation seismic denoising signal-to-noise ratio K-singular value decomposition learning-type overcomplete dictionary.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部