期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于模糊自适应PID算法的车辆稳定性控制
被引量:
4
1
作者
向志渊
《科技通报》
北大核心
2016年第1期183-186,共4页
针对传统的模糊自适应PID算法在车辆稳定控制的应用中还存在控制精度不高的问题,本文设计了一种以RBF神经网络优化模糊自适应PID算法为基础的车辆稳定性控制模型。这一模型首先优化RBF神经网络算法隐含层的中心数目,这一优化过程主要是...
针对传统的模糊自适应PID算法在车辆稳定控制的应用中还存在控制精度不高的问题,本文设计了一种以RBF神经网络优化模糊自适应PID算法为基础的车辆稳定性控制模型。这一模型首先优化RBF神经网络算法隐含层的中心数目,这一优化过程主要是借助减聚类的方法进行。然后采用Logistic对其中心值进行精度的提升,最后采用改进RBF神经网络对模糊自适应PID控制算法进行改进,以达到更精确的控制。仿真实验结果发现,与PID算法相比,基于模糊自适应PID算法设计的这一车辆稳定性控制模型的控制精度更高,并且在车辆稳定性控制应用中具有更好的效果。
展开更多
关键词
模糊自适应PID
RBF神经网络
隐含层中心优化
Logistic精度
优化
下载PDF
职称材料
题名
基于模糊自适应PID算法的车辆稳定性控制
被引量:
4
1
作者
向志渊
机构
钟山职业技术学院工业与信息化分院
出处
《科技通报》
北大核心
2016年第1期183-186,共4页
文摘
针对传统的模糊自适应PID算法在车辆稳定控制的应用中还存在控制精度不高的问题,本文设计了一种以RBF神经网络优化模糊自适应PID算法为基础的车辆稳定性控制模型。这一模型首先优化RBF神经网络算法隐含层的中心数目,这一优化过程主要是借助减聚类的方法进行。然后采用Logistic对其中心值进行精度的提升,最后采用改进RBF神经网络对模糊自适应PID控制算法进行改进,以达到更精确的控制。仿真实验结果发现,与PID算法相比,基于模糊自适应PID算法设计的这一车辆稳定性控制模型的控制精度更高,并且在车辆稳定性控制应用中具有更好的效果。
关键词
模糊自适应PID
RBF神经网络
隐含层中心优化
Logistic精度
优化
Keywords
fuzzy adaptive PID
RBF neural network
hidden layer center optimization
logistic optimization precision
分类号
TP336 [自动化与计算机技术—计算机系统结构]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于模糊自适应PID算法的车辆稳定性控制
向志渊
《科技通报》
北大核心
2016
4
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部