期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
凸极同步电机的隐极机模型——稳态分析
1
作者 施传立 黎明 +1 位作者 郑廷海 田喜友 《华北电力学院学报》 北大核心 1989年第3期27-35,共9页
本文推导了既适台于凸极同步电机又适合于隐极同步电机的稳态分析模型,由本文提出的方法代替凸极同步电机的经典方法——“双反应理论”。同时,利用本文介绍的模型对华北电力学院6.25KVA的模拟水轮发电机进行了稳态计算并得出了满意的... 本文推导了既适台于凸极同步电机又适合于隐极同步电机的稳态分析模型,由本文提出的方法代替凸极同步电机的经典方法——“双反应理论”。同时,利用本文介绍的模型对华北电力学院6.25KVA的模拟水轮发电机进行了稳态计算并得出了满意的结果。 展开更多
关键词 凸极同步电极 稳态分析 隐型机模型
下载PDF
PREDICTIVE MODELS AND GENERATIVE COMPLEXITY
2
作者 Wolfgang LHR 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2012年第1期30-45,共16页
The causal states of computational mechanics define the minimal sufficient memory for a given discrete stationary stochastic process. Their entropy is an important complexity measure called statistical complexity (or... The causal states of computational mechanics define the minimal sufficient memory for a given discrete stationary stochastic process. Their entropy is an important complexity measure called statistical complexity (or true measure complexity). They induce the s-machine, which is a hidden Markov model (HMM) generating the process. But it is not the minimal one, although generative HMMs also have a natural predictive interpretation. This paper gives a mathematical proof of the idea that the s-machine is the minimal HMM with an additional (partial) determinism condition. Minimal internal state entropy of a generative HMM is in analogy to statistical complexity called generative complexity. This paper also shows that generative complexity depends on the process in a nice way. It is, as a function of the process, lower semi-continuous (w.r.t. weak-, topology), concave, and behaves nice under ergodic decomposition of the process. 展开更多
关键词 Causal states COMPLEXITY s-machine generative complexity HMM partially deterministicHMM predictive model statistical.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部