期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
一种新的基于Agent的神经网络隐层节点数的优化算法 被引量:8
1
作者 高鹏毅 陈传波 +1 位作者 秦升 胡迎松 《计算机工程与科学》 CSCD 北大核心 2010年第5期30-33,共4页
本文提出了一种新的基于Agent的神经网络隐层结构的优化算法(OHA)。该方法包括两个部分,分别由RLAgent和NNAgent合作完成。RLAgent根据强化学习算法找到一个比当前节点数更优的解,并反馈给NNAgent。NNAgent据此构建相应的网络,并采用分... 本文提出了一种新的基于Agent的神经网络隐层结构的优化算法(OHA)。该方法包括两个部分,分别由RLAgent和NNAgent合作完成。RLAgent根据强化学习算法找到一个比当前节点数更优的解,并反馈给NNAgent。NNAgent据此构建相应的网络,并采用分层训练的算法对该网络进行优化,训练结果再发给RLAgent。在多次循环后,OHA算法就可以找到一个训练误差最小的全局最优解(权值及隐层节点数)。本文讨论了有关的算法、测试和结果分析。Iris数据集和危险评估数据集的测试结果表明,算法避免了盲目搜索造成的计算开销,明显改善了优化性能。 展开更多
关键词 神经网络 节点 隐层结构优化 智能代理 强化学习
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部