In this paper,a implicit difference scheme is proposed for solving the equation of one_dimension parabolic type by undetermined paameters.The stability condition is r=αΔt/Δx 2 1/2 and the truncation error is o(...In this paper,a implicit difference scheme is proposed for solving the equation of one_dimension parabolic type by undetermined paameters.The stability condition is r=αΔt/Δx 2 1/2 and the truncation error is o(Δt 4+Δx 4) It can be easily solved by double sweeping method.展开更多
The numerical solution of large scale multi-dimensional convection diffusion equations often requires efficient parallel algorithms.In this work,we consider the extension of a recently proposed non-overlapping domain ...The numerical solution of large scale multi-dimensional convection diffusion equations often requires efficient parallel algorithms.In this work,we consider the extension of a recently proposed non-overlapping domain decomposition method for two dimensional time dependent convection diffusion equations with variable coefficients. By combining predictor-corrector technique,modified upwind differences with explicitimplicit coupling,the method under consideration provides intrinsic parallelism while maintaining good stability and accuracy.Moreover,for multi-dimensional problems, the method can be readily implemented on a multi-processor system and does not have the limitation on the choice of subdomains required by some other similar predictor-corrector or stabilized schemes.These properties of the method are demonstrated in this work through both rigorous mathematical analysis and numerical experiments.展开更多
A memory reduction technique is proposed for solving stationary kinetic model equations. As implied by an integral solution of the stationary kinetic equation, a velocity distribution function can be reconstructed fro...A memory reduction technique is proposed for solving stationary kinetic model equations. As implied by an integral solution of the stationary kinetic equation, a velocity distribution function can be reconstructed from given macroscopic variables. Based on this fact, we propose a technique to reconstruct distribution function at discrete level, and employ it to develop an implicit numerical method for kinetic equations. The new implicit method only stores the macroscopic quantities which appear in the collision term, and does not store the distribution functions. As a result, enormous memory requirement for solving kinetic equations is totally relieved. Several boundary conditions, such as, inlet, outlet and isothermal boundaries, are discussed. Some numerical tests demonstrate the validity and efficiency of the technique.The new implicit solver provides nearly identical solution as the explicit kinetic solver, while the memory requirement is on the same order as the Navier–Stokes solver.展开更多
Among several implicitization methods, the method based on resultant computation is a simple and direct one, but it often brings extraneous factors which are difficult to remove. This paper studies a class of rational...Among several implicitization methods, the method based on resultant computation is a simple and direct one, but it often brings extraneous factors which are difficult to remove. This paper studies a class of rational space curves and rational surfaces by implicitization with univaxiate resultant computations. This method is more efficient than the other algorithms in finding implicit equations for this class of rational curves and surfaces.展开更多
文摘In this paper,a implicit difference scheme is proposed for solving the equation of one_dimension parabolic type by undetermined paameters.The stability condition is r=αΔt/Δx 2 1/2 and the truncation error is o(Δt 4+Δx 4) It can be easily solved by double sweeping method.
基金the National Natural Science Foundation of China(No.10571017)supported in part by the National Natural Science Foundation of China(No.60533020)supported in part by NSF DMS 0712744
文摘The numerical solution of large scale multi-dimensional convection diffusion equations often requires efficient parallel algorithms.In this work,we consider the extension of a recently proposed non-overlapping domain decomposition method for two dimensional time dependent convection diffusion equations with variable coefficients. By combining predictor-corrector technique,modified upwind differences with explicitimplicit coupling,the method under consideration provides intrinsic parallelism while maintaining good stability and accuracy.Moreover,for multi-dimensional problems, the method can be readily implemented on a multi-processor system and does not have the limitation on the choice of subdomains required by some other similar predictor-corrector or stabilized schemes.These properties of the method are demonstrated in this work through both rigorous mathematical analysis and numerical experiments.
基金supported by the National Natural Science Foundation of China(11602091 and 91530319)the National Key Research and Development Plan(2016YFB0600805)
文摘A memory reduction technique is proposed for solving stationary kinetic model equations. As implied by an integral solution of the stationary kinetic equation, a velocity distribution function can be reconstructed from given macroscopic variables. Based on this fact, we propose a technique to reconstruct distribution function at discrete level, and employ it to develop an implicit numerical method for kinetic equations. The new implicit method only stores the macroscopic quantities which appear in the collision term, and does not store the distribution functions. As a result, enormous memory requirement for solving kinetic equations is totally relieved. Several boundary conditions, such as, inlet, outlet and isothermal boundaries, are discussed. Some numerical tests demonstrate the validity and efficiency of the technique.The new implicit solver provides nearly identical solution as the explicit kinetic solver, while the memory requirement is on the same order as the Navier–Stokes solver.
基金supported by the Natural Science Foundation of China under Grant No. 10901163the Knowledge Innovation Program of the Chinese Academy of Sciences
文摘Among several implicitization methods, the method based on resultant computation is a simple and direct one, but it often brings extraneous factors which are difficult to remove. This paper studies a class of rational space curves and rational surfaces by implicitization with univaxiate resultant computations. This method is more efficient than the other algorithms in finding implicit equations for this class of rational curves and surfaces.