In the present paper the Riesz fractional coupled Schr6dinger-Boussinesq (S-B) equations have been solved by the time-splitting Fourier spectral (TSFS) method. This proposed technique is utilized for discretizing ...In the present paper the Riesz fractional coupled Schr6dinger-Boussinesq (S-B) equations have been solved by the time-splitting Fourier spectral (TSFS) method. This proposed technique is utilized for discretizing the Schrodinger like equation and further, a pseudospectral discretization has been employed for the Boussinesq-like equation. Apart from that an implicit finite difference approach has also been proposed to compare the results with the solutions obtained from the time-splitting technique. Furthermore, the time-splitting method is proved to be unconditionally stable. The error norms along with the graphical solutions have also been presented here.展开更多
An algorithm composed of an iterative modified approximate factorization(MAF(k)) method with Navier-Stokes characteristic boundary conditions(NSCBC) is proposed for solving subsonic viscous flows.A transformation on t...An algorithm composed of an iterative modified approximate factorization(MAF(k)) method with Navier-Stokes characteristic boundary conditions(NSCBC) is proposed for solving subsonic viscous flows.A transformation on the matrix equation in MAF(k) is made in order to impose the implicit boundary conditions properly.To be in consistent with the implicit solver for the interior domain,an implicit scheme for NSCBC is formulated.The performance of the developed algorithm is investigated using spatially evolving zero pressure gradient boundary layer over a flat plate and a wall jet mixing with a cross flow over a flat plate with a square hole as the test cases.The numerical results are compared to the existing experimental datasets and a number of general correlations,together with other available numerical solutions,which demonstrate that the developed algorithm possesses promising capacity for simulating the subsonic viscous flows with large CFL number.展开更多
基金Supported by NBHM,Mumbai,under Department of Atomic Energy,Government of India vide Grant No.2/48(7)/2015/NBHM(R.P.)/R&D Ⅱ/11403
文摘In the present paper the Riesz fractional coupled Schr6dinger-Boussinesq (S-B) equations have been solved by the time-splitting Fourier spectral (TSFS) method. This proposed technique is utilized for discretizing the Schrodinger like equation and further, a pseudospectral discretization has been employed for the Boussinesq-like equation. Apart from that an implicit finite difference approach has also been proposed to compare the results with the solutions obtained from the time-splitting technique. Furthermore, the time-splitting method is proved to be unconditionally stable. The error norms along with the graphical solutions have also been presented here.
文摘An algorithm composed of an iterative modified approximate factorization(MAF(k)) method with Navier-Stokes characteristic boundary conditions(NSCBC) is proposed for solving subsonic viscous flows.A transformation on the matrix equation in MAF(k) is made in order to impose the implicit boundary conditions properly.To be in consistent with the implicit solver for the interior domain,an implicit scheme for NSCBC is formulated.The performance of the developed algorithm is investigated using spatially evolving zero pressure gradient boundary layer over a flat plate and a wall jet mixing with a cross flow over a flat plate with a square hole as the test cases.The numerical results are compared to the existing experimental datasets and a number of general correlations,together with other available numerical solutions,which demonstrate that the developed algorithm possesses promising capacity for simulating the subsonic viscous flows with large CFL number.