The objectives of the present study were to prepare stealthy etoposide proliposomes and study the pharmacokinetics in rabbits. Blank stealthy liposomes were prepared by film dispersion method. Stealthy etoposide lipos...The objectives of the present study were to prepare stealthy etoposide proliposomes and study the pharmacokinetics in rabbits. Blank stealthy liposomes were prepared by film dispersion method. Stealthy etoposide liposomes were prepared by using the ammonium sulfate gradient loading procedure. Vacuum freeze-drying technique was used to dry stealthy etoposide liposomes. Encapsulation efficiency of stealthy etoposide proliposomes was determined by Sephadex chromatography. The morphology was observed by transmission electronic microscope. The particle size and zeta potential were measured by using electrophoretic light scattering technology. The pharmacokinetics in rabbits was evaluated by comparison with etoposide injection and conventional liposomes, respectively. Mean encapsulation efficiency of stealthy etoposide proliposomes was 83.92% ± 3.65% (n = 3). The liposomes were round or oval. Mean particle size was (124.5 ±26.9) nm, and zeta potential was (-39.50 ±1.04) mV. Following intravenous injection administration at a dose of 1.5 mg/kg etoposide, the three kinds of etoposide preparations were fitted with the two-compartment model. T1/2 β and A UC values of stealthy etoposide proliposomes were (19.26 ± 3.16) h and (26.04 ±3.53) μg/h/mL, respectively. T1/2 β and AUC values of etoposide injection were (0.94 ± 0.21) h and (0.98 ± 0.26) μg/h/mL, respectively. T1/2β and AUC values of conventional liposomes were (7.99 ± 1.36) h and (11.65 ± 1.70) μg/h/mL, respectively. Results indicated that the stealthy etoposide proliposomes could significantly extend the duration of etoposide in blood circulation.展开更多
Aim The objectives of the present study were to prepare stealthy vincristine plus quinacrine liposomes and evaluate the pharmacokinetics in Sprague-Dawley rats. Methods Anti-resistant stealthy liposomes were prepared ...Aim The objectives of the present study were to prepare stealthy vincristine plus quinacrine liposomes and evaluate the pharmacokinetics in Sprague-Dawley rats. Methods Anti-resistant stealthy liposomes were prepared by incorporating vincristine with quinacrine together using the ammonium sulfate gradient loading procedure. For the pharmacokinetic study, Sprague-Dawley rats were divided into two groups: each rat in the Group Ⅰwas administered intravenously via tail vein as stealthy liposomal vincristine plus quinacrine, and the Group Ⅱ similarly given as a mixture solution of free vincristine plus free quinacrine. The concentrations of vincristine and quinacrine in plasma were measured by HPLC with diode array detection and fluorescence detection, respectively. Results The mean particle size of stealthy liposomes was 135.9 ±7.1 nm and the encapsulation efficiencies of stealthy liposomes were 〉 90% for vincristine, and 〉 85% for quinacrine, respectively. Administered as the stealthy vincristine plus quinacrine liposomes, the plasma exposures of both vincristine and quinacrine were significantly extended, and the mean concentrations of both vincristine and quinacrine were significantly higher compared to those given as the mixture solution of free vincristine plus free quinacrine. The Cmax, t1/2, AUC0-24 h values of vincristine for stealthy liposomal group were significantly increased, but the total clearance Cl values decreased, as compared to those of free drug group, respectively. Similarly, the Cmax, t1/2 and AUC0-24 h values of quinacrine for the stealthy liposomal group were significantly increased, but the total clearance C1 values decreased, as compared to those of free quinacrine. Conclusion The anti-resistant stealthy liposomes are successfully prepared by incorporating vincristine with quinacrine, and the liposomes extend significantly the duration in blood circulation and improve evidently the plasma concentrations of both vincristine and quinacrine.展开更多
This paper presents an efficient way to preserve the volume of implicit surfaces generated by skeletons. Recursive subdivision is used to efficiently calculate the volume. The criterion for subdivision is obtained by ...This paper presents an efficient way to preserve the volume of implicit surfaces generated by skeletons. Recursive subdivision is used to efficiently calculate the volume. The criterion for subdivision is obtained by using the property of density functions and treating different types of skeletons respectively to get accurate minimum and maximum distances from a cube to a skeleton. Compared with the criterion generated by other ways such as using traditional Interval Analysis, Affine Arithmetic, or Lipschitz condition, our approach is much better both in speed and accuracy.展开更多
Active targeting drug delivery systems (TDDS), which could improve drug therapeutic efficacy and reduce toxicity, are still the focus of many scientific researches in cancer therapy. The drug circulation time and tu...Active targeting drug delivery systems (TDDS), which could improve drug therapeutic efficacy and reduce toxicity, are still the focus of many scientific researches in cancer therapy. The drug circulation time and tumor accumulation could be significantly increased with the application of sterically stabilized liposome (SSL). SSL could also be modified easily with certain ligands to achieve targeting drug delivery. Because many tumors overexpress somatostatin receptors (SSTRs), octreotide (OCT) becomes a potential targeting ligand due to its high affinity to SSTRs, especially to subtype 2 (SSTR2). In this study, OCT was conjugated to methoxypolyethyleneglycol-distearoyl-phosphatidylethanolamine (DSPE-PEG2000), and doxorubicin (DOX)-loaded SSL with a variable percentage of octreotide-methoxypolyethyleneglycol-distearoyl-phosphatidylethanolamine (DSPE-PEG/00o-OCT) were prepared (OCT-SSL-DOX). All liposomes were about 90 nm in diameter and negatively charged on the surface, with DOX encapsulation efficiency at above 95%. OCT modification exhibited little effect on the physicochemical properties of SSL. In this study, cellular delivery efficacy of all prepared liposomes was evaluated in SSTIL2-positive cells in vitro by flow cytometry for the optimization of the OCT density on the surface of liposomes. Lipid formulation containing 1.5% DSPE-PEG20oo-OCT exhibited the highest efficiency of intracellular drug delivery. The modification of OCT did not alter the release behaviors of liposomal DOX in vitro, but OCT-SSL-DOX increased the cytotoxicity and improved the anti-tumor effect of liposomal DOX in SST1L2- positive cells and tumor-bearing mice models. In summary, OCT-modified SSL succeeded in increasing intracellular delivery and enhancing therapeutic efficacy of encapsulated anticancer agent, suggesting that it might be a promising TDDS for the treatment of SSTR2-overexpressing cancers.展开更多
基金Research Projects of Heilongjiang Science and Technology Department (Grant No.GC05C31601).
文摘The objectives of the present study were to prepare stealthy etoposide proliposomes and study the pharmacokinetics in rabbits. Blank stealthy liposomes were prepared by film dispersion method. Stealthy etoposide liposomes were prepared by using the ammonium sulfate gradient loading procedure. Vacuum freeze-drying technique was used to dry stealthy etoposide liposomes. Encapsulation efficiency of stealthy etoposide proliposomes was determined by Sephadex chromatography. The morphology was observed by transmission electronic microscope. The particle size and zeta potential were measured by using electrophoretic light scattering technology. The pharmacokinetics in rabbits was evaluated by comparison with etoposide injection and conventional liposomes, respectively. Mean encapsulation efficiency of stealthy etoposide proliposomes was 83.92% ± 3.65% (n = 3). The liposomes were round or oval. Mean particle size was (124.5 ±26.9) nm, and zeta potential was (-39.50 ±1.04) mV. Following intravenous injection administration at a dose of 1.5 mg/kg etoposide, the three kinds of etoposide preparations were fitted with the two-compartment model. T1/2 β and A UC values of stealthy etoposide proliposomes were (19.26 ± 3.16) h and (26.04 ±3.53) μg/h/mL, respectively. T1/2 β and AUC values of etoposide injection were (0.94 ± 0.21) h and (0.98 ± 0.26) μg/h/mL, respectively. T1/2β and AUC values of conventional liposomes were (7.99 ± 1.36) h and (11.65 ± 1.70) μg/h/mL, respectively. Results indicated that the stealthy etoposide proliposomes could significantly extend the duration of etoposide in blood circulation.
基金National Natural Science Foundation of China(No.30572260).
文摘Aim The objectives of the present study were to prepare stealthy vincristine plus quinacrine liposomes and evaluate the pharmacokinetics in Sprague-Dawley rats. Methods Anti-resistant stealthy liposomes were prepared by incorporating vincristine with quinacrine together using the ammonium sulfate gradient loading procedure. For the pharmacokinetic study, Sprague-Dawley rats were divided into two groups: each rat in the Group Ⅰwas administered intravenously via tail vein as stealthy liposomal vincristine plus quinacrine, and the Group Ⅱ similarly given as a mixture solution of free vincristine plus free quinacrine. The concentrations of vincristine and quinacrine in plasma were measured by HPLC with diode array detection and fluorescence detection, respectively. Results The mean particle size of stealthy liposomes was 135.9 ±7.1 nm and the encapsulation efficiencies of stealthy liposomes were 〉 90% for vincristine, and 〉 85% for quinacrine, respectively. Administered as the stealthy vincristine plus quinacrine liposomes, the plasma exposures of both vincristine and quinacrine were significantly extended, and the mean concentrations of both vincristine and quinacrine were significantly higher compared to those given as the mixture solution of free vincristine plus free quinacrine. The Cmax, t1/2, AUC0-24 h values of vincristine for stealthy liposomal group were significantly increased, but the total clearance Cl values decreased, as compared to those of free drug group, respectively. Similarly, the Cmax, t1/2 and AUC0-24 h values of quinacrine for the stealthy liposomal group were significantly increased, but the total clearance C1 values decreased, as compared to those of free quinacrine. Conclusion The anti-resistant stealthy liposomes are successfully prepared by incorporating vincristine with quinacrine, and the liposomes extend significantly the duration in blood circulation and improve evidently the plasma concentrations of both vincristine and quinacrine.
文摘This paper presents an efficient way to preserve the volume of implicit surfaces generated by skeletons. Recursive subdivision is used to efficiently calculate the volume. The criterion for subdivision is obtained by using the property of density functions and treating different types of skeletons respectively to get accurate minimum and maximum distances from a cube to a skeleton. Compared with the criterion generated by other ways such as using traditional Interval Analysis, Affine Arithmetic, or Lipschitz condition, our approach is much better both in speed and accuracy.
基金National Basic Research Program of China(Grant No.2009CB930300)State Key Projects(Grant No.2009ZX09310-001)the 863 Project of China(Grant No.2007AA021811)
文摘Active targeting drug delivery systems (TDDS), which could improve drug therapeutic efficacy and reduce toxicity, are still the focus of many scientific researches in cancer therapy. The drug circulation time and tumor accumulation could be significantly increased with the application of sterically stabilized liposome (SSL). SSL could also be modified easily with certain ligands to achieve targeting drug delivery. Because many tumors overexpress somatostatin receptors (SSTRs), octreotide (OCT) becomes a potential targeting ligand due to its high affinity to SSTRs, especially to subtype 2 (SSTR2). In this study, OCT was conjugated to methoxypolyethyleneglycol-distearoyl-phosphatidylethanolamine (DSPE-PEG2000), and doxorubicin (DOX)-loaded SSL with a variable percentage of octreotide-methoxypolyethyleneglycol-distearoyl-phosphatidylethanolamine (DSPE-PEG/00o-OCT) were prepared (OCT-SSL-DOX). All liposomes were about 90 nm in diameter and negatively charged on the surface, with DOX encapsulation efficiency at above 95%. OCT modification exhibited little effect on the physicochemical properties of SSL. In this study, cellular delivery efficacy of all prepared liposomes was evaluated in SSTIL2-positive cells in vitro by flow cytometry for the optimization of the OCT density on the surface of liposomes. Lipid formulation containing 1.5% DSPE-PEG20oo-OCT exhibited the highest efficiency of intracellular drug delivery. The modification of OCT did not alter the release behaviors of liposomal DOX in vitro, but OCT-SSL-DOX increased the cytotoxicity and improved the anti-tumor effect of liposomal DOX in SST1L2- positive cells and tumor-bearing mice models. In summary, OCT-modified SSL succeeded in increasing intracellular delivery and enhancing therapeutic efficacy of encapsulated anticancer agent, suggesting that it might be a promising TDDS for the treatment of SSTR2-overexpressing cancers.