期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
煤矿安全隐患信息自动分类方法
被引量:
9
1
作者
谢斌红
马非
+1 位作者
潘理虎
张英俊
《工矿自动化》
北大核心
2018年第10期10-14,共5页
人工分类方式难以满足海量煤矿安全隐患信息的分类要求,而基于概率统计的文本自动分类方法分类准确率较低。针对上述问题,提出了一种基于Word2vec和卷积神经网络的煤矿安全隐患信息自动分类方法。首先对隐患信息进行分词、去停用词等预...
人工分类方式难以满足海量煤矿安全隐患信息的分类要求,而基于概率统计的文本自动分类方法分类准确率较低。针对上述问题,提出了一种基于Word2vec和卷积神经网络的煤矿安全隐患信息自动分类方法。首先对隐患信息进行分词、去停用词等预处理,然后应用Word2vec来表征词之间的语义相似性关系,最后利用卷积神经网络提取隐患信息的局部上下文高层特征,并使用Softmax分类器实现隐患信息的自动分类。实验结果表明,该方法实现了端到端的自动分类,可有效提升分类的准确性和全面性。
展开更多
关键词
煤矿安全
隐患信息自动分类
文本
分类
卷积神经网络
Word2vec
下载PDF
职称材料
题名
煤矿安全隐患信息自动分类方法
被引量:
9
1
作者
谢斌红
马非
潘理虎
张英俊
机构
太原科技大学计算机科学与技术学院
中国科学院地理科学与资源研究所
出处
《工矿自动化》
北大核心
2018年第10期10-14,共5页
基金
山西省中科院科技合作项目(20141101001)
山西省社会发展科技攻关项目(20140313020-1)
文摘
人工分类方式难以满足海量煤矿安全隐患信息的分类要求,而基于概率统计的文本自动分类方法分类准确率较低。针对上述问题,提出了一种基于Word2vec和卷积神经网络的煤矿安全隐患信息自动分类方法。首先对隐患信息进行分词、去停用词等预处理,然后应用Word2vec来表征词之间的语义相似性关系,最后利用卷积神经网络提取隐患信息的局部上下文高层特征,并使用Softmax分类器实现隐患信息的自动分类。实验结果表明,该方法实现了端到端的自动分类,可有效提升分类的准确性和全面性。
关键词
煤矿安全
隐患信息自动分类
文本
分类
卷积神经网络
Word2vec
Keywords
coal mine safety
automatic classification of hidden danger information
text classification
convolutional neural network
Word2vec
分类号
TD67 [矿业工程—矿山机电]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
煤矿安全隐患信息自动分类方法
谢斌红
马非
潘理虎
张英俊
《工矿自动化》
北大核心
2018
9
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部