期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
隐私数据保护技术在医院信息管理领域应用探讨 被引量:5
1
作者 刘逸敏 程传苗 邢茂迎 《中国数字医学》 2008年第7期49-51,共3页
医院信息系统正逐步实现与医疗影像(PACS)和临床信息(CLS)等不同医疗应用领域系统的互联、整合电子病历的应用、以及结合新系统架构(如SOA,基于服务的架构)以提供新的WEB服务。这些应用研究使患者所有医疗记录的在线查询、区域医疗信息... 医院信息系统正逐步实现与医疗影像(PACS)和临床信息(CLS)等不同医疗应用领域系统的互联、整合电子病历的应用、以及结合新系统架构(如SOA,基于服务的架构)以提供新的WEB服务。这些应用研究使患者所有医疗记录的在线查询、区域医疗信息共享与交换成为可能,同时也给医院信息系统隐私数据的保护带来新的思考与新技术支撑的需求。 展开更多
关键词 医院信息管理 数据 隐私数据保护技术
下载PDF
WSN时空相关性隐私数据保护研究
2
作者 裴华艳 王焕民 《电脑知识与技术》 2015年第1X期47-49,共3页
时空相关性数据是一种新的WSN隐私数据,在阐述时空相关性隐私数据的基础上,研究了三种不同的隐私数据保护技术,从隐私性、精确性、延迟时间和能量消耗四个方面对其性能进行了分析。研究总结了这些技术的保护对象、关键实现技术、优势、... 时空相关性数据是一种新的WSN隐私数据,在阐述时空相关性隐私数据的基础上,研究了三种不同的隐私数据保护技术,从隐私性、精确性、延迟时间和能量消耗四个方面对其性能进行了分析。研究总结了这些技术的保护对象、关键实现技术、优势、不足、已解决的问题和还需要继续研究的问题。最后,指出了WSN时空相关性隐私数据保护未来的研究方向。 展开更多
关键词 WSN 时空相关性隐私数据 隐私数据保护技术
下载PDF
A New Anonymity Model for Privacy-Preserving Data Publishing 被引量:5
3
作者 HUANG Xuezhen LIU Jiqiang HAN Zhen YANG Jun 《China Communications》 SCIE CSCD 2014年第9期47-59,共13页
Privacy-preserving data publishing (PPDP) is one of the hot issues in the field of the network security. The existing PPDP technique cannot deal with generality attacks, which explicitly contain the sensitivity atta... Privacy-preserving data publishing (PPDP) is one of the hot issues in the field of the network security. The existing PPDP technique cannot deal with generality attacks, which explicitly contain the sensitivity attack and the similarity attack. This paper proposes a novel model, (w,γ, k)-anonymity, to avoid generality attacks on both cases of numeric and categorical attributes. We show that the optimal (w, γ, k)-anonymity problem is NP-hard and conduct the Top-down Local recoding (TDL) algorithm to implement the model. Our experiments validate the improvement of our model with real data. 展开更多
关键词 data security privacy protection ANONYMITY data publishing
下载PDF
Differentially Private Multidimensional Data Publication 被引量:1
4
作者 ZHANG Ji DONG Xin +3 位作者 YU Jiadi LUO Yuan LI Minglu WU Bin 《China Communications》 SCIE CSCD 2014年第A01期79-85,共7页
Multidimensional data provides enormous opportunities in a variety of applications. Recent research has indicated the failure of existing sanitization techniques (e.g., k-anonymity) to provide rigorous privacy guara... Multidimensional data provides enormous opportunities in a variety of applications. Recent research has indicated the failure of existing sanitization techniques (e.g., k-anonymity) to provide rigorous privacy guarantees. Privacy- preserving multidimensional data publishing currently lacks a solid theoretical foundation. It is urgent to develop new techniques with provable privacy guarantees, e-Differential privacy is the only method that can provide such guarantees. In this paper, we propose a multidimensional data publishing scheme that ensures c-differential privacy while providing accurate results for query processing. The proposed solution applies nonstandard wavelet transforms on the raw multidimensional data and adds noise to guarantee c-differential privacy. Then, the scheme processes arbitrarily queries directly in the noisy wavelet- coefficient synopses of relational tables and expands the noisy wavelet coefficients back into noisy relational tuples until the end result of the query. Moreover, experimental results demonstrate the high accuracy and effectiveness of our approach. 展开更多
关键词 data publication differential privacy data utility
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部