Privacy-preserving data publishing (PPDP) is one of the hot issues in the field of the network security. The existing PPDP technique cannot deal with generality attacks, which explicitly contain the sensitivity atta...Privacy-preserving data publishing (PPDP) is one of the hot issues in the field of the network security. The existing PPDP technique cannot deal with generality attacks, which explicitly contain the sensitivity attack and the similarity attack. This paper proposes a novel model, (w,γ, k)-anonymity, to avoid generality attacks on both cases of numeric and categorical attributes. We show that the optimal (w, γ, k)-anonymity problem is NP-hard and conduct the Top-down Local recoding (TDL) algorithm to implement the model. Our experiments validate the improvement of our model with real data.展开更多
Multidimensional data provides enormous opportunities in a variety of applications. Recent research has indicated the failure of existing sanitization techniques (e.g., k-anonymity) to provide rigorous privacy guara...Multidimensional data provides enormous opportunities in a variety of applications. Recent research has indicated the failure of existing sanitization techniques (e.g., k-anonymity) to provide rigorous privacy guarantees. Privacy- preserving multidimensional data publishing currently lacks a solid theoretical foundation. It is urgent to develop new techniques with provable privacy guarantees, e-Differential privacy is the only method that can provide such guarantees. In this paper, we propose a multidimensional data publishing scheme that ensures c-differential privacy while providing accurate results for query processing. The proposed solution applies nonstandard wavelet transforms on the raw multidimensional data and adds noise to guarantee c-differential privacy. Then, the scheme processes arbitrarily queries directly in the noisy wavelet- coefficient synopses of relational tables and expands the noisy wavelet coefficients back into noisy relational tuples until the end result of the query. Moreover, experimental results demonstrate the high accuracy and effectiveness of our approach.展开更多
基金supported in part by Research Fund for the Doctoral Program of Higher Education of China(No.20120009110007)Program for Innovative Research Team in University of Ministry of Education of China (No.IRT201206)+3 种基金Program for New Century Excellent Talents in University(NCET-110565)the Fundamental Research Funds for the Central Universities(No.2012JBZ010)the Open Project Program of Beijing Key Laboratory of Trusted Computing at Beijing University of TechnologyBeijing Higher Education Young Elite Teacher Project(No. YETP0542)
文摘Privacy-preserving data publishing (PPDP) is one of the hot issues in the field of the network security. The existing PPDP technique cannot deal with generality attacks, which explicitly contain the sensitivity attack and the similarity attack. This paper proposes a novel model, (w,γ, k)-anonymity, to avoid generality attacks on both cases of numeric and categorical attributes. We show that the optimal (w, γ, k)-anonymity problem is NP-hard and conduct the Top-down Local recoding (TDL) algorithm to implement the model. Our experiments validate the improvement of our model with real data.
基金the National Basic Research Program of China under Grant 2013CB338004,Doctoral Program of Higher Education of China under Grant No.20120073120034,National Natural Science Foundation of China under Grants No.61070204,61101108,and National S&T Major Program under Grant No.2011ZX03002-005-01
文摘Multidimensional data provides enormous opportunities in a variety of applications. Recent research has indicated the failure of existing sanitization techniques (e.g., k-anonymity) to provide rigorous privacy guarantees. Privacy- preserving multidimensional data publishing currently lacks a solid theoretical foundation. It is urgent to develop new techniques with provable privacy guarantees, e-Differential privacy is the only method that can provide such guarantees. In this paper, we propose a multidimensional data publishing scheme that ensures c-differential privacy while providing accurate results for query processing. The proposed solution applies nonstandard wavelet transforms on the raw multidimensional data and adds noise to guarantee c-differential privacy. Then, the scheme processes arbitrarily queries directly in the noisy wavelet- coefficient synopses of relational tables and expands the noisy wavelet coefficients back into noisy relational tuples until the end result of the query. Moreover, experimental results demonstrate the high accuracy and effectiveness of our approach.