-
题名n阶等差数列的隐蔽公差
被引量:1
- 1
-
-
作者
龚益
-
机构
中国社会科学院数量经济与技术经济研究所
-
出处
《科技术语研究》
2005年第4期36-39,共4页
-
文摘
等差是等差数列最核心的本质特征。高阶等差数列(或称n阶等差数列)是等差数列 的普遍形式,一阶等差数列是n阶等差数列当n=1时的特例。研究表明,高阶等差数列的差分性 质在经济计量领域有明确的体现。例如,单整序列数据I(n)的差分性质即与n阶等差数列密切相 关。遗憾的是,以往所见关于等差数列的讨论,大多围绕其一阶情况展开。有些常见的关于等差数 列的定义也仅仅适用于一阶条件的假定,不能确切描述等差数列的高阶(二阶及以上)情况。为了 适应经济计量研究与实践的发展,有必要重新研讨关于等差数列术语的定义问题。本文尝试提出 高阶等差数列“隐蔽公差”的概念,同时给出n阶等差数列的形式表达以及n阶等差数列公差与其 相对应一阶等差数列公差的换算关系式D=dnn!,其目的在于放宽约束条件,给出能够涵盖n阶等 差数列情况、具有普适性的术语定义。
-
关键词
等差数列
n阶等差数列
公差
隐蔽公差
单整
-
Keywords
arithmetic progression, n order arithmetic progression, common difference, en-difference, integration
-
分类号
O122
[理学—基础数学]
-