智能电网的安全运行高度依赖信息环节功能所提供的强大技术保障,致使电网在运行过程中易受到恶性数据注入等网络攻击的威胁,其中空间隐蔽型恶性数据注入攻击是最普遍的一种。为保证该类恶性数据注入攻击在电网运行中能被高效实时检测处...智能电网的安全运行高度依赖信息环节功能所提供的强大技术保障,致使电网在运行过程中易受到恶性数据注入等网络攻击的威胁,其中空间隐蔽型恶性数据注入攻击是最普遍的一种。为保证该类恶性数据注入攻击在电网运行中能被高效实时检测处理,提出一套面向监视控制与数据采集(supervisory control and data acquisition,SCADA)和相量测量单元(phasor measurement unit,PMU)混合量测的智能电网恶性数据在线防御流程。首先通过历史状态量获取与状态预测实现状态量挖掘,再进行SCADA仪表与PMU量测量的恶性数据检测、剔除与修正。此外,该文提出一种适用于混合量测系统的多重匹配状态预测方法,其预测结果作为状态参考用以打破恶性数据隐蔽性。IEEE-14和IEEE-118节点测试系统仿真结果验证了所提方法预测准确性及在线检测空间隐蔽型恶性数据的有效性。展开更多
工业控制系统(Industrial Control System,ICS)是工业生产过程中的关键部分,攻击者发起同时攻击多台设备的数据,使系统更加紊乱。针对ICS中存在的数据攻击,文章改进基于过程感知的隐蔽性攻击检测(Process-Aware Stealthy-Attack Detecti...工业控制系统(Industrial Control System,ICS)是工业生产过程中的关键部分,攻击者发起同时攻击多台设备的数据,使系统更加紊乱。针对ICS中存在的数据攻击,文章改进基于过程感知的隐蔽性攻击检测(Process-Aware Stealthy-Attack Detection,PASAD)算法,提出适用于多变量环境的基于鲁棒主成分分析法和过程感知的隐蔽性攻击检测(Robust Principal Component Analysis and Process-Aware Stealthy-Attack Detection,RPCA-PASAD)算法。首先,文章利用皮尔逊相关系数将强相关性的数据划分为同一个集群,并将异常数据进行放大,通过RPCA对数据进行降维和去噪,将去噪后的数据嵌入汉克尔矩阵;然后,文章利用投影矩阵分析去噪后的数据间的内在联系,获得系统稳定状态数据的中心;最后,文章采用最小二乘法对数据进行量化获取判别数据是否异常的阈值。对田纳西-伊斯曼(Tenhessee-Eastman,TE)过程模型和水处理模型(Secure Water Treatment,SWaT)进行了仿真测试,实验结果表明,文章所提检测算法适用于多变量数据攻击的检测环境,对隐蔽性数据攻击检测实时性较强,误报率较低,可以有效地部署在数据采集与监视控制(Supervisory Control and Data Acquisition,SCADA)系统主机和可编程逻辑控制器(Programmable Logic Controller,PLC)中,对实际生产生活中减少ICS的损失具有重要意义。展开更多
Seismic sedimentology is the study of sedimentary rocks and facies using seismic data. However, often the sedimentary body features can't be described quantitatively due to the limit of seismic resolution. High resol...Seismic sedimentology is the study of sedimentary rocks and facies using seismic data. However, often the sedimentary body features can't be described quantitatively due to the limit of seismic resolution. High resolution inversion offsets this limitation and is applied to seismic sedimentology to identify subtle traps under complex geologic conditions, thereby widening the applicable range of seismic sedimentology. In this paper, based on seismic sedimentology, seismic phase-controlled nonlinear random inversion is used to predict the sandy conglomerate reservoir of Es3 in the Chezhen depression in Shengli Oilfield. Thickness and sedimentary microfacies maps of sandy conglomerate bodies in several stages are presented and several subtle traps were predicted and verified by drilling.展开更多
文摘智能电网的安全运行高度依赖信息环节功能所提供的强大技术保障,致使电网在运行过程中易受到恶性数据注入等网络攻击的威胁,其中空间隐蔽型恶性数据注入攻击是最普遍的一种。为保证该类恶性数据注入攻击在电网运行中能被高效实时检测处理,提出一套面向监视控制与数据采集(supervisory control and data acquisition,SCADA)和相量测量单元(phasor measurement unit,PMU)混合量测的智能电网恶性数据在线防御流程。首先通过历史状态量获取与状态预测实现状态量挖掘,再进行SCADA仪表与PMU量测量的恶性数据检测、剔除与修正。此外,该文提出一种适用于混合量测系统的多重匹配状态预测方法,其预测结果作为状态参考用以打破恶性数据隐蔽性。IEEE-14和IEEE-118节点测试系统仿真结果验证了所提方法预测准确性及在线检测空间隐蔽型恶性数据的有效性。
文摘工业控制系统(Industrial Control System,ICS)是工业生产过程中的关键部分,攻击者发起同时攻击多台设备的数据,使系统更加紊乱。针对ICS中存在的数据攻击,文章改进基于过程感知的隐蔽性攻击检测(Process-Aware Stealthy-Attack Detection,PASAD)算法,提出适用于多变量环境的基于鲁棒主成分分析法和过程感知的隐蔽性攻击检测(Robust Principal Component Analysis and Process-Aware Stealthy-Attack Detection,RPCA-PASAD)算法。首先,文章利用皮尔逊相关系数将强相关性的数据划分为同一个集群,并将异常数据进行放大,通过RPCA对数据进行降维和去噪,将去噪后的数据嵌入汉克尔矩阵;然后,文章利用投影矩阵分析去噪后的数据间的内在联系,获得系统稳定状态数据的中心;最后,文章采用最小二乘法对数据进行量化获取判别数据是否异常的阈值。对田纳西-伊斯曼(Tenhessee-Eastman,TE)过程模型和水处理模型(Secure Water Treatment,SWaT)进行了仿真测试,实验结果表明,文章所提检测算法适用于多变量数据攻击的检测环境,对隐蔽性数据攻击检测实时性较强,误报率较低,可以有效地部署在数据采集与监视控制(Supervisory Control and Data Acquisition,SCADA)系统主机和可编程逻辑控制器(Programmable Logic Controller,PLC)中,对实际生产生活中减少ICS的损失具有重要意义。
基金sponsored by the 973 Program(Grant No.2006CB202306)Open Fund of the State Key Laboratory of Petroleum Resource and Prospecting(Grant No.PRPDX2008-07)
文摘Seismic sedimentology is the study of sedimentary rocks and facies using seismic data. However, often the sedimentary body features can't be described quantitatively due to the limit of seismic resolution. High resolution inversion offsets this limitation and is applied to seismic sedimentology to identify subtle traps under complex geologic conditions, thereby widening the applicable range of seismic sedimentology. In this paper, based on seismic sedimentology, seismic phase-controlled nonlinear random inversion is used to predict the sandy conglomerate reservoir of Es3 in the Chezhen depression in Shengli Oilfield. Thickness and sedimentary microfacies maps of sandy conglomerate bodies in several stages are presented and several subtle traps were predicted and verified by drilling.