期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
利用隐语义生成对抗网络的恶意软件检测
1
作者 王玉洁 赵丽 《控制工程》 CSCD 北大核心 2020年第4期746-750,共5页
随着恶意软件数量的增多,传统人工分析方法已无法胜任。针对这一问题,本文提出一种支持向量机分类器与隐语义生成对抗网络(Latent Factor Generative Adversarial Networks, LF-GAN)相结合的恶意软件检测新方法,其通过提取具有i个服从... 随着恶意软件数量的增多,传统人工分析方法已无法胜任。针对这一问题,本文提出一种支持向量机分类器与隐语义生成对抗网络(Latent Factor Generative Adversarial Networks, LF-GAN)相结合的恶意软件检测新方法,其通过提取具有i个服从特定高斯分布的特征量用以自动区分恶意软件和正常软件。具体方法为利用变分自动编码器(Variational Autoencoder,VAE)将数据投影至隐空间以便于特征提取,并作为训练集传递至所设计的LF-GAN,以进一步优化网络中关键特征参数。算例结果表明,本文所提LF-GAN对恶意软件检测精度达到96.97%,且高于其他传统检测方法,即本文所提方法具备良好的对恶意软件的检测和识别能力。 展开更多
关键词 恶意软件检测 隐语义生成对抗网络 变分自动编码器 深度学习 支持向量机
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部