随着海上风电场的快速发展,降低运维成本和提高风电机组可用性问题已成为研究热点。文中提出一种数据驱动的风电机组性能评估方法用来提高风电机组运维效率,降低维护成本。该方法结合了神经网络和随机过程理论,对风电机组数据采集与监...随着海上风电场的快速发展,降低运维成本和提高风电机组可用性问题已成为研究热点。文中提出一种数据驱动的风电机组性能评估方法用来提高风电机组运维效率,降低维护成本。该方法结合了神经网络和随机过程理论,对风电机组数据采集与监视控制系统(supervisory control and data acquisition,SCADA)数据进行分析,建立了风电机组运行行为模型,提出了评估风电机组运行性能的指标。在此基础上,结合9台风电机组的SCADA数据,评估了运行性能。针对风电机组运行中出现的异常状态,分析了可能的原因,并提出了相应的维修建议。结果表明,该方法能够有效地分析SCADA数据,所提指标对提高风电场运维效率具有参考价值。展开更多
文摘随着海上风电场的快速发展,降低运维成本和提高风电机组可用性问题已成为研究热点。文中提出一种数据驱动的风电机组性能评估方法用来提高风电机组运维效率,降低维护成本。该方法结合了神经网络和随机过程理论,对风电机组数据采集与监视控制系统(supervisory control and data acquisition,SCADA)数据进行分析,建立了风电机组运行行为模型,提出了评估风电机组运行性能的指标。在此基础上,结合9台风电机组的SCADA数据,评估了运行性能。针对风电机组运行中出现的异常状态,分析了可能的原因,并提出了相应的维修建议。结果表明,该方法能够有效地分析SCADA数据,所提指标对提高风电场运维效率具有参考价值。