The absorbing process in isolating and coating process of α-olefin drag reducing polymer was studied by molecular dynamic simulation method, on basis of coating theory of α-olefin drag reducing polymer particles wit...The absorbing process in isolating and coating process of α-olefin drag reducing polymer was studied by molecular dynamic simulation method, on basis of coating theory of α-olefin drag reducing polymer particles with polyurethane as coating material. The distributions of sodium laurate, sodium dodeeyl sulfate, and sodium dodeeyl benzene sulfonate on the surface of α-olefin drag reducing polymer particles were almost the same, but the bending degrees of them were obviously different. The bending degree of SLA molecules was greater than those of the other two surfactant molecules. Simulation results of absorbing and accumulating structure showed that, though hydrophobie properties of surfactant molecules were almost the same, water density around long chain sulfonate sodium was bigger than that around alkyl sulfate sodium. This property goes against useful absorbing and accumulating on the surface of α-olefin drag reducing polymer particles; simulation results of interactions of different surfactant and multiple hydroxyl compounds on surface of particles showed that, interactions of different surfaetant and one kind of multiple hydroxyl compound were similar to those of one kind of surfaetant and different multiple hydroxyl compounds. These two contrast types of interactions also exhibited the differences of absorbing distribution and closing degrees to surface of particles. The sequence of closing degrees was derived from simulation; control step of addition polymerization interaction in coating process was absorbing mass transfer process, so the more closed to surface of particle the multiple hydroxyl compounds were, the easier interactions With isoeyanate were. Simulation results represented the compatibility relationship between surfactant and multiple hydroxyl compounds. The isolating and coating processes of α-olefin drag reducing polymer were further understood on molecule and atom level through above simulation research, and based on the simulation, a referenced theoretical basis was provided for practical optimal selection and experimental preparation of α-olefin drag reducing polymer particles suspension isolation agent.展开更多
结合最新雷达研制工作的需要,介绍了VHF波段中集中参数W ilk inson功率合成器的设计理论和方法,并用微波仿真软件对其进行优化。通过制作并测试该功率合成器,验证了该设计方法的可行性。同时给出了实物照片和测试数据。该功率合成器适用...结合最新雷达研制工作的需要,介绍了VHF波段中集中参数W ilk inson功率合成器的设计理论和方法,并用微波仿真软件对其进行优化。通过制作并测试该功率合成器,验证了该设计方法的可行性。同时给出了实物照片和测试数据。该功率合成器适用于VHF波段的110MHz-140MHz,峰值功率可达到6KW,可作为独立的功率合成器,也可以用作功率合成的基本单元。展开更多
文摘The absorbing process in isolating and coating process of α-olefin drag reducing polymer was studied by molecular dynamic simulation method, on basis of coating theory of α-olefin drag reducing polymer particles with polyurethane as coating material. The distributions of sodium laurate, sodium dodeeyl sulfate, and sodium dodeeyl benzene sulfonate on the surface of α-olefin drag reducing polymer particles were almost the same, but the bending degrees of them were obviously different. The bending degree of SLA molecules was greater than those of the other two surfactant molecules. Simulation results of absorbing and accumulating structure showed that, though hydrophobie properties of surfactant molecules were almost the same, water density around long chain sulfonate sodium was bigger than that around alkyl sulfate sodium. This property goes against useful absorbing and accumulating on the surface of α-olefin drag reducing polymer particles; simulation results of interactions of different surfactant and multiple hydroxyl compounds on surface of particles showed that, interactions of different surfaetant and one kind of multiple hydroxyl compound were similar to those of one kind of surfaetant and different multiple hydroxyl compounds. These two contrast types of interactions also exhibited the differences of absorbing distribution and closing degrees to surface of particles. The sequence of closing degrees was derived from simulation; control step of addition polymerization interaction in coating process was absorbing mass transfer process, so the more closed to surface of particle the multiple hydroxyl compounds were, the easier interactions With isoeyanate were. Simulation results represented the compatibility relationship between surfactant and multiple hydroxyl compounds. The isolating and coating processes of α-olefin drag reducing polymer were further understood on molecule and atom level through above simulation research, and based on the simulation, a referenced theoretical basis was provided for practical optimal selection and experimental preparation of α-olefin drag reducing polymer particles suspension isolation agent.
文摘结合最新雷达研制工作的需要,介绍了VHF波段中集中参数W ilk inson功率合成器的设计理论和方法,并用微波仿真软件对其进行优化。通过制作并测试该功率合成器,验证了该设计方法的可行性。同时给出了实物照片和测试数据。该功率合成器适用于VHF波段的110MHz-140MHz,峰值功率可达到6KW,可作为独立的功率合成器,也可以用作功率合成的基本单元。