Rabbit limbal corneal epithelial cells,corneal endothelial cells and keratocytes were cultured on amniotic membrane. Phase contrast microscope examination was performed daily. Histological and scan electron microscopi...Rabbit limbal corneal epithelial cells,corneal endothelial cells and keratocytes were cultured on amniotic membrane. Phase contrast microscope examination was performed daily. Histological and scan electron microscopic examinations were carried out to observe the growth,arrangement and adhesion of cultivated cells. Results showed that three corneal cell types seeded on amniotic membrane grew well and had normal cell morphology. Cultured cells attached firmly on the surface of amniotic membrane. Corneal epithelial cells showed singular layer or stratification. Cell boundaries were formed and tightly opposed. Corneal endothelial cells showed cobblestone or polygonal morphologic characteristics that appeared uniform in size. The cellular arrangement was compact. Keratocytes elongated and showed triangle or dendritic morphology with many intercellular joints which could form networks. In conclusion,amniotic membrane has good scaffold property,diffusion effect and compatibility with corneal cells. The basement membrane side of amniotic membrane facilitated the growth of corneal epithelial cells and endothelial cells and cell junctions were tightly developed. The spongy layer of amniotic membrane facilitated the growth of keratocytes and intercellular joints were rich. Amniotic membrane is an ideal biomaterial for layering tissue engineered cornea.展开更多
Atrial fibrillation(AF) has been considered as a growing epidemiological problem in the world,with a substantial impact on morbidity and mortality.Ambulatory electrocardiography(e.g.,Holter) monitoring is commonly use...Atrial fibrillation(AF) has been considered as a growing epidemiological problem in the world,with a substantial impact on morbidity and mortality.Ambulatory electrocardiography(e.g.,Holter) monitoring is commonly used for AF diagnosis and therapy and the automated detection of AF is of great significance due to the vast amount of information provided.This study presents a combined method to achieve high accuracy in AF detection.Firstly,we detected the suspected transitions between AF and sinus rhythm using the delta RR interval distribution difference curve,which were then classified by a combination analysis of P wave and RR interval.The MIT-BIH AF database was used for algorithm validation and a high sensitivity and a high specificity(98.2% and 97.5%,respectively) were achieved.Further,we developed a dataset of 24-h paroxysmal AF Holter recordings(n=45) to evaluate the performance in clinical practice,which yielded satisfactory accuracy(sensitivity=96.3%,specificity=96.8%).展开更多
This paper presents a numerical analysis of laminar periodic flow and heat transfer in a rectangular constant temperature-surfaced channel with triangular wavy baffles (TWBs).The TWBs were mounted on the opposite wall...This paper presents a numerical analysis of laminar periodic flow and heat transfer in a rectangular constant temperature-surfaced channel with triangular wavy baffles (TWBs).The TWBs were mounted on the opposite walls of the rectangular channel with inline arrangements.The TWBs are placed on the upper and lower walls with attack angle 45?.The numerical is performed with three dif-ferent baffle height ratios (BR=b/H=0.05 0.3) at constant pitch ratio (PR) of 1.0 for the range 100 ≤ Re ≤ 1000.The computational results are shown in the topology of flow and heat transfer.It is found that the heat transfer in the channel with the TWB is more effective than that without baffle.The in-crease in the blockage ratio,BR leads to a considerable increase in the Nusselt number and friction factor.The results indicate that at low BR,a fluid flow is significantly disturbed resulting in inefficient heat transfer.As BR increases,both heat transfer rate in terms of Nusselt number and pressure drop in terms of friction factor increase.Over the range examined,the maximum Nu/Nu0 of 7.3 and f/f0 of 126 are both found with the use of the baffles with BR=0.30 at Re=1000.In addition,the flow structure and temperature field in the channel with TWBs are also reported.展开更多
基金This work was funded by majorspecial item ofScienceandTechnology Office of Guangdong ( No. 2 0 0 1A30 2 0 2 0 10 2 ),NationalNatural Scientific Fund of China ( No. 30 371519) and Natural Scientific Fund ofJinanUniversity
文摘Rabbit limbal corneal epithelial cells,corneal endothelial cells and keratocytes were cultured on amniotic membrane. Phase contrast microscope examination was performed daily. Histological and scan electron microscopic examinations were carried out to observe the growth,arrangement and adhesion of cultivated cells. Results showed that three corneal cell types seeded on amniotic membrane grew well and had normal cell morphology. Cultured cells attached firmly on the surface of amniotic membrane. Corneal epithelial cells showed singular layer or stratification. Cell boundaries were formed and tightly opposed. Corneal endothelial cells showed cobblestone or polygonal morphologic characteristics that appeared uniform in size. The cellular arrangement was compact. Keratocytes elongated and showed triangle or dendritic morphology with many intercellular joints which could form networks. In conclusion,amniotic membrane has good scaffold property,diffusion effect and compatibility with corneal cells. The basement membrane side of amniotic membrane facilitated the growth of corneal epithelial cells and endothelial cells and cell junctions were tightly developed. The spongy layer of amniotic membrane facilitated the growth of keratocytes and intercellular joints were rich. Amniotic membrane is an ideal biomaterial for layering tissue engineered cornea.
文摘Atrial fibrillation(AF) has been considered as a growing epidemiological problem in the world,with a substantial impact on morbidity and mortality.Ambulatory electrocardiography(e.g.,Holter) monitoring is commonly used for AF diagnosis and therapy and the automated detection of AF is of great significance due to the vast amount of information provided.This study presents a combined method to achieve high accuracy in AF detection.Firstly,we detected the suspected transitions between AF and sinus rhythm using the delta RR interval distribution difference curve,which were then classified by a combination analysis of P wave and RR interval.The MIT-BIH AF database was used for algorithm validation and a high sensitivity and a high specificity(98.2% and 97.5%,respectively) were achieved.Further,we developed a dataset of 24-h paroxysmal AF Holter recordings(n=45) to evaluate the performance in clinical practice,which yielded satisfactory accuracy(sensitivity=96.3%,specificity=96.8%).
文摘This paper presents a numerical analysis of laminar periodic flow and heat transfer in a rectangular constant temperature-surfaced channel with triangular wavy baffles (TWBs).The TWBs were mounted on the opposite walls of the rectangular channel with inline arrangements.The TWBs are placed on the upper and lower walls with attack angle 45?.The numerical is performed with three dif-ferent baffle height ratios (BR=b/H=0.05 0.3) at constant pitch ratio (PR) of 1.0 for the range 100 ≤ Re ≤ 1000.The computational results are shown in the topology of flow and heat transfer.It is found that the heat transfer in the channel with the TWB is more effective than that without baffle.The in-crease in the blockage ratio,BR leads to a considerable increase in the Nusselt number and friction factor.The results indicate that at low BR,a fluid flow is significantly disturbed resulting in inefficient heat transfer.As BR increases,both heat transfer rate in terms of Nusselt number and pressure drop in terms of friction factor increase.Over the range examined,the maximum Nu/Nu0 of 7.3 and f/f0 of 126 are both found with the use of the baffles with BR=0.30 at Re=1000.In addition,the flow structure and temperature field in the channel with TWBs are also reported.