A full-vector plane-wave method is introduced, particularly in calculating the photonic crystal in-plane photonic bandgap of a 2D triangular structure. Using numerical simulation, we can obtain the in-plane bandgap st...A full-vector plane-wave method is introduced, particularly in calculating the photonic crystal in-plane photonic bandgap of a 2D triangular structure. Using numerical simulation, we can obtain the in-plane bandgap structure of a hollow-core photonic crystal fiber. In the experiments, we measured the transmission spectra of a hollow-core photonic crystal fiber and a silica rod. And using the numerical calculation we can get the relative transmission spectrum of a hollow-core photonic crystal fiber. Compared with the result of theoretical simulation, we found that they are in accordance with each other, i.e. they have the same bandgap in about the same normalized frequency.展开更多
基金the National High Technology Develop-ment Program of China(grant No. 2003AA311010) and the NationaBasic Research Program of China(grant No. 2003CB314905).
文摘A full-vector plane-wave method is introduced, particularly in calculating the photonic crystal in-plane photonic bandgap of a 2D triangular structure. Using numerical simulation, we can obtain the in-plane bandgap structure of a hollow-core photonic crystal fiber. In the experiments, we measured the transmission spectra of a hollow-core photonic crystal fiber and a silica rod. And using the numerical calculation we can get the relative transmission spectrum of a hollow-core photonic crystal fiber. Compared with the result of theoretical simulation, we found that they are in accordance with each other, i.e. they have the same bandgap in about the same normalized frequency.