Specimens of steel fiber reinforced concrete (SFRC) in volume ratios of 0%, 0.5%, 1% and 1.5% were prepared to study the supporting effect of SFRC at these diffterent volume ratios in a deep soft rock tunnel. Experi...Specimens of steel fiber reinforced concrete (SFRC) in volume ratios of 0%, 0.5%, 1% and 1.5% were prepared to study the supporting effect of SFRC at these diffterent volume ratios in a deep soft rock tunnel. Experiments with mechanical properties of compressive strength in cubic specimens, cleave strength in cylindrical specimens and four-point flexure strength of sheet metal specimens were carded out. The experimental results indicate that SFRC in a volume ratio of 1% is superior in ranking to other volume ratios in terms of technique and economics. By means of a numerical simulation, given the characteristics of soft rock deformation and damage at great depth, a new support substitution scheme of SFRC to replace plain concrete is proposed. The results of an industrial trial show that the support provided by SFRC can withstand large deformations of the surrounding rock. Good resuits have been obtained in a practical anplication.展开更多
In order to increase the safety of working environment and decrease the unwanted costs related to overbreak in tunnel excavation projects, it is necessary to minimize overbreak percentage. Thus, based on regression an...In order to increase the safety of working environment and decrease the unwanted costs related to overbreak in tunnel excavation projects, it is necessary to minimize overbreak percentage. Thus, based on regression analysis and fuzzy inference system, this paper tries to develop predictive models to estimate overbreak caused by blasting at the Alborz Tunnel. To develop the models, 202 datasets were utilized, out of which 182 were used for constructing the models. To validate and compare the obtained results,determination coefficient(R2) and root mean square error(RMSE) indexes were chosen. For the fuzzy model, R2 and RMSE are equal to 0.96 and 0.55 respectively, whereas for regression model, they are 0.41 and 1.75 respectively, proving that the fuzzy predictor performs, significantly, better than the statistical method. Using the developed fuzzy model, the percentage of overbreak was minimized in the Alborz Tunnel.展开更多
The heat How generated from the infinite rock mass surrounding the underground tunnels is a major cause for the increasing cooling demands in deep mine tunnels.Insulation layers with lower thermal conductivities on tu...The heat How generated from the infinite rock mass surrounding the underground tunnels is a major cause for the increasing cooling demands in deep mine tunnels.Insulation layers with lower thermal conductivities on tunnel walls and roof ceilings are believed to supply a thermo-barrier for heat abatement.However,it is found that no systematic theoretical investigations were made to predict and confirm the effectiveness of underground thermal insulation.Specifically,investigations on the underground insulation problems involving heat flows through the semi-infinite hot rock mass and insulation layer were not sufficient.Thus,in this paper,the thermal characteristics,accompanied with heat flow through the semi-infinite rock mass and the insulation layer,were modeled by both analytical and numerical methods with focus on underground mine tunnels.The close agreements between models have indicated that the thermal insulation applied on tunnel surfaces is able to provide promising heat abatement effects.展开更多
基金Project 50490274 supported by the National Natural Science Foundation of China
文摘Specimens of steel fiber reinforced concrete (SFRC) in volume ratios of 0%, 0.5%, 1% and 1.5% were prepared to study the supporting effect of SFRC at these diffterent volume ratios in a deep soft rock tunnel. Experiments with mechanical properties of compressive strength in cubic specimens, cleave strength in cylindrical specimens and four-point flexure strength of sheet metal specimens were carded out. The experimental results indicate that SFRC in a volume ratio of 1% is superior in ranking to other volume ratios in terms of technique and economics. By means of a numerical simulation, given the characteristics of soft rock deformation and damage at great depth, a new support substitution scheme of SFRC to replace plain concrete is proposed. The results of an industrial trial show that the support provided by SFRC can withstand large deformations of the surrounding rock. Good resuits have been obtained in a practical anplication.
文摘In order to increase the safety of working environment and decrease the unwanted costs related to overbreak in tunnel excavation projects, it is necessary to minimize overbreak percentage. Thus, based on regression analysis and fuzzy inference system, this paper tries to develop predictive models to estimate overbreak caused by blasting at the Alborz Tunnel. To develop the models, 202 datasets were utilized, out of which 182 were used for constructing the models. To validate and compare the obtained results,determination coefficient(R2) and root mean square error(RMSE) indexes were chosen. For the fuzzy model, R2 and RMSE are equal to 0.96 and 0.55 respectively, whereas for regression model, they are 0.41 and 1.75 respectively, proving that the fuzzy predictor performs, significantly, better than the statistical method. Using the developed fuzzy model, the percentage of overbreak was minimized in the Alborz Tunnel.
基金The financial support from an Engage Grant in the Natural Sciences and Engineering Research Council(NSERC),Canada,is gratefully acknowledged
文摘The heat How generated from the infinite rock mass surrounding the underground tunnels is a major cause for the increasing cooling demands in deep mine tunnels.Insulation layers with lower thermal conductivities on tunnel walls and roof ceilings are believed to supply a thermo-barrier for heat abatement.However,it is found that no systematic theoretical investigations were made to predict and confirm the effectiveness of underground thermal insulation.Specifically,investigations on the underground insulation problems involving heat flows through the semi-infinite hot rock mass and insulation layer were not sufficient.Thus,in this paper,the thermal characteristics,accompanied with heat flow through the semi-infinite rock mass and the insulation layer,were modeled by both analytical and numerical methods with focus on underground mine tunnels.The close agreements between models have indicated that the thermal insulation applied on tunnel surfaces is able to provide promising heat abatement effects.