期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
ARIMA-BP神经网络高速列车隧道压力波预测模型研究 被引量:6
1
作者 陈春俊 杨露 +1 位作者 何智颖 周林春 《中国测试》 CAS 北大核心 2021年第10期80-86,共7页
为更精准地进行车内压力波动控制,需要预测高速列车通过隧道时车外隧道压力波的实时变化值。在对列车历史运行重复隧道压力波数据的分析基础上,采用工况匹配(WCM)与加权K最近邻(WKNN)算法从数据库中选取若干与本次工况相接近的运行状态... 为更精准地进行车内压力波动控制,需要预测高速列车通过隧道时车外隧道压力波的实时变化值。在对列车历史运行重复隧道压力波数据的分析基础上,采用工况匹配(WCM)与加权K最近邻(WKNN)算法从数据库中选取若干与本次工况相接近的运行状态数据,并根据相似程度确定数据权重,构建预测用的历史数据。分别采用差分自回归滑动平均(ARIMA)与BP神经网络(BPNN)模型对隧道压力波进行预测,并将两种预测结果并联考虑,形成ARIMA-BPNN隧道压力波组合预测模型。利用武广客运专线某隧道压力波实测数据进行仿真。仿真结果表明:与WCM-WKNN-ARIMA及WCM-WKNN-BPNN单一预测模型以及WCM-ARIMA-BPNN组合预测模型相比,所建立组合模型能有效对隧道压力波进行预测,且能够取得更高精度的预测结果。 展开更多
关键词 高速列车 隧道压力波预测模型 差分自回归滑动平均-BP神经网络组合模型 工况匹配算法 加权K最近邻算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部