We have presented here a simple model of magnetic tunnel junction(MTJ)device and the proposed MTJ model is utilizedfor validation purpose and also to study its tunnel magneto-resistance(TMR)effect by both simulation a...We have presented here a simple model of magnetic tunnel junction(MTJ)device and the proposed MTJ model is utilizedfor validation purpose and also to study its tunnel magneto-resistance(TMR)effect by both simulation and experimentalmethod using an operational amplifier(OPAMP)based inverting amplifier.Experimental results substantiates both the simulatedand theoretical outcomes.展开更多
Since novel optoelectronic devices based on the peculiar behaviors of the tunneling probability, e.g., resonant tunneling devices (RTD) and band-pass filter, are steadily proposed, the analytic transfer matrix (ATM) m...Since novel optoelectronic devices based on the peculiar behaviors of the tunneling probability, e.g., resonant tunneling devices (RTD) and band-pass filter, are steadily proposed, the analytic transfer matrix (ATM) method is extended to study these devices. For several examples, we explore the effect of the scattered subwaves on tunneling; it is shown that the resonant or band-pass structures in tunneling probability are determined by the phase shift results from the scattered subwaves.展开更多
Gated transport measurements are the backbone of electrical characterization of nanoscale electronic devices. Scanning gate microscopy (SGM) is one such gating technique that adds crucial spatial information, access...Gated transport measurements are the backbone of electrical characterization of nanoscale electronic devices. Scanning gate microscopy (SGM) is one such gating technique that adds crucial spatial information, accessing the localized properties of semiconductor devices. Nanowires represent a central device concept due to the potential to combine very different materials. However, SGM on semiconductor nanowires has been limited to a resolution in the 50-100 nm range. Here, we present a study by SGM of newly developed III-V semiconductor nanowire InAs/GaSb heterojunction Esaki tunnel diode devices under ultra-high vacuum. Sub-5 nm resolution is demonstrated at room temperature via use of quartz resonator atomic force microscopy sensors, with the capability to resolve InAs nanowire facets, the InAs/GaSb tunnel diode transition and nanoscale defects on the device. We demonstrate that such measurements can rapidly give important insight into the device properties via use of a simplified physical model, without the requirement for extensive calculation of the electrostatics of the system. Interestingly, by precise spatial correlation of the device electrical transport properties and surface structure we show the position and existence of a very abrupt (〈10 nm) electrical transition across the InAs/GaSb junction despite the change in material composition occurring only over 30-50 nm. The direct and simultaneous link between nanostructure composition and electrical properties helps set important limits for the precision in structural control needed to achieve desired device performance.展开更多
文摘We have presented here a simple model of magnetic tunnel junction(MTJ)device and the proposed MTJ model is utilizedfor validation purpose and also to study its tunnel magneto-resistance(TMR)effect by both simulation and experimentalmethod using an operational amplifier(OPAMP)based inverting amplifier.Experimental results substantiates both the simulatedand theoretical outcomes.
基金supported by the State Key Laboratory of Advanced Optical Communication Systems and Networks (Grant No. 2008SH05)
文摘Since novel optoelectronic devices based on the peculiar behaviors of the tunneling probability, e.g., resonant tunneling devices (RTD) and band-pass filter, are steadily proposed, the analytic transfer matrix (ATM) method is extended to study these devices. For several examples, we explore the effect of the scattered subwaves on tunneling; it is shown that the resonant or band-pass structures in tunneling probability are determined by the phase shift results from the scattered subwaves.
文摘Gated transport measurements are the backbone of electrical characterization of nanoscale electronic devices. Scanning gate microscopy (SGM) is one such gating technique that adds crucial spatial information, accessing the localized properties of semiconductor devices. Nanowires represent a central device concept due to the potential to combine very different materials. However, SGM on semiconductor nanowires has been limited to a resolution in the 50-100 nm range. Here, we present a study by SGM of newly developed III-V semiconductor nanowire InAs/GaSb heterojunction Esaki tunnel diode devices under ultra-high vacuum. Sub-5 nm resolution is demonstrated at room temperature via use of quartz resonator atomic force microscopy sensors, with the capability to resolve InAs nanowire facets, the InAs/GaSb tunnel diode transition and nanoscale defects on the device. We demonstrate that such measurements can rapidly give important insight into the device properties via use of a simplified physical model, without the requirement for extensive calculation of the electrostatics of the system. Interestingly, by precise spatial correlation of the device electrical transport properties and surface structure we show the position and existence of a very abrupt (〈10 nm) electrical transition across the InAs/GaSb junction despite the change in material composition occurring only over 30-50 nm. The direct and simultaneous link between nanostructure composition and electrical properties helps set important limits for the precision in structural control needed to achieve desired device performance.