The successful completion of the Zhengzhou-Xi'an high-speed railway project has greatly improved the construction level of China's large-section loess tunnels, and has resulted in significant progress being made in ...The successful completion of the Zhengzhou-Xi'an high-speed railway project has greatly improved the construction level of China's large-section loess tunnels, and has resulted in significant progress being made in both design theory and construction technology. This paper systematically summarizes the tech- nical characteristics and main problems of the large-section loess tunnels on China's high-speed railway, including classification of the surrounding rock, design of the supporting structure, surface settlement and cracking control, and safe and rapid construction methods. On this basis, the key construction tech- niques of loess tunnels with large sections for high-speed railway are expounded from the aspects of design and construction. The research results show that the classification of loess strata surrounding large tunnels should be based on the geological age of the loess, and be determined by combining the plastic index and the water content. In addition, the influence of the buried depth should be considered. During tunnel excavation disturbance, if the tensile stress exceeds the soil tensile or shear strength, the surface part of the sliding trend plane can be damaged, and visible cracks can form. The pressure of the surrounding rock of a large-section loess tunnel should be calculated according to the buried depth, using the corresponding formula. A three-bench seven-step excavation method of construction was used as the core technology system to ensure the safe and rapid construction of a large-section loess tunnel, following a field test to optimize the construction parameters and determine the engineering measures to stabilize the tunnel face. The conclusions and methods presented here are of great significance in revealing the strata and supporting mechanics of large-section loess tunnels, and in optimizing the supporting structure design and the technical parameters for construction.展开更多
Mass movements are very common problems in the eastern Black Sea region of Turkey due to its climate conditions, geological, and geomorphological characteristics. High slope angle, weathering, dense rainfalls, and ant...Mass movements are very common problems in the eastern Black Sea region of Turkey due to its climate conditions, geological, and geomorphological characteristics. High slope angle, weathering, dense rainfalls, and anthropogenic impacts are generally reported as the most important triggering factors in the region. Following the portal slope excavations in the entrance section of Cankurtaran tunnel, located in the region, where the highly weathered andesitic tuff crops out, a circular toe failure occurred. The main target of the present study is to investigate the causes and occurrence mechanism of this failure and to determine the feasible remedial measures against it using finite element method(FEM) in four stages. These stages are slope stability analyses for pre-and postexcavation cases, and remediation design assessments for slope and tunnel. The results of the FEM-SSR analyses indicated that the insufficient initial support design and weathering of the andesitic tuffs are the main factors that caused the portal failure. After installing a rock retaining wall with jet grout columns and reinforced slope benching applications, the factor of safety increased from 0.83 to 2.80. In addition toslope stability evaluation, the Rock Mass Rating(RMR), Rock Mass Quality(Q) and New Austrian Tunneling Method(NATM) systems were also utilized as empirical methods to characterize the tunnel ground and to determine the tunnel support design. The performance of the suggested empirical support design, induced stress distributions and deformations were analyzed by means of numerical modelling. Finally, it was concluded that the recommended stabilization technique was essential for the dynamic long-term stability and prevents the effects of failure. Additionally, the FEM method gives useful and reasonably reliable results in evaluating the stability of cut slopes and tunnels excavated both in continuous and discontinuous rock masses.展开更多
A new kind of tunnel support was put forward on the basis of the anchor spraysupport principle. The mechanics of the new three-dimensional steel bar shotcrete liningsupport was studied and the structure's internal...A new kind of tunnel support was put forward on the basis of the anchor spraysupport principle. The mechanics of the new three-dimensional steel bar shotcrete liningsupport was studied and the structure's internal forces were analyzed. The model experiment was done relying on the industrial test. The conclusion of numerical calculationsproved that the ANSYS program is reasonable and creditable. It was compared to otherkinds of support that are commonly used in soft rock tunnels. The technique and economiccontrasts of the typical tunnel with support three-dimensional steel bar were completed.展开更多
This paper deals with the problem of tunneling effects on existing buildings. The direct solution,using the condensation method,is presented. This method allows the structural and geotechnical engineers to treat the p...This paper deals with the problem of tunneling effects on existing buildings. The direct solution,using the condensation method,is presented. This method allows the structural and geotechnical engineers to treat the problem separately and then assemble a relatively small matrix that can be solved directly,even within a spreadsheet. There are certain concerns that the resultant matrix may be ill-conditioned when the structure is very stiff. This paper suggests an alternative method that essentially relaxes the system from an infinitely rigid structure solution. As such,it does not encounter the problems associated with stiff systems. The two methods are evaluated for an example problem of tunneling below a framed structure. It is found that while the direct method may fail to predict reasonable values when the structure is extremely rigid,the alternative method is stable. The relaxation method can therefore be used in cases where there are concerns about the reliability of a direct solution.展开更多
文摘The successful completion of the Zhengzhou-Xi'an high-speed railway project has greatly improved the construction level of China's large-section loess tunnels, and has resulted in significant progress being made in both design theory and construction technology. This paper systematically summarizes the tech- nical characteristics and main problems of the large-section loess tunnels on China's high-speed railway, including classification of the surrounding rock, design of the supporting structure, surface settlement and cracking control, and safe and rapid construction methods. On this basis, the key construction tech- niques of loess tunnels with large sections for high-speed railway are expounded from the aspects of design and construction. The research results show that the classification of loess strata surrounding large tunnels should be based on the geological age of the loess, and be determined by combining the plastic index and the water content. In addition, the influence of the buried depth should be considered. During tunnel excavation disturbance, if the tensile stress exceeds the soil tensile or shear strength, the surface part of the sliding trend plane can be damaged, and visible cracks can form. The pressure of the surrounding rock of a large-section loess tunnel should be calculated according to the buried depth, using the corresponding formula. A three-bench seven-step excavation method of construction was used as the core technology system to ensure the safe and rapid construction of a large-section loess tunnel, following a field test to optimize the construction parameters and determine the engineering measures to stabilize the tunnel face. The conclusions and methods presented here are of great significance in revealing the strata and supporting mechanics of large-section loess tunnels, and in optimizing the supporting structure design and the technical parameters for construction.
文摘Mass movements are very common problems in the eastern Black Sea region of Turkey due to its climate conditions, geological, and geomorphological characteristics. High slope angle, weathering, dense rainfalls, and anthropogenic impacts are generally reported as the most important triggering factors in the region. Following the portal slope excavations in the entrance section of Cankurtaran tunnel, located in the region, where the highly weathered andesitic tuff crops out, a circular toe failure occurred. The main target of the present study is to investigate the causes and occurrence mechanism of this failure and to determine the feasible remedial measures against it using finite element method(FEM) in four stages. These stages are slope stability analyses for pre-and postexcavation cases, and remediation design assessments for slope and tunnel. The results of the FEM-SSR analyses indicated that the insufficient initial support design and weathering of the andesitic tuffs are the main factors that caused the portal failure. After installing a rock retaining wall with jet grout columns and reinforced slope benching applications, the factor of safety increased from 0.83 to 2.80. In addition toslope stability evaluation, the Rock Mass Rating(RMR), Rock Mass Quality(Q) and New Austrian Tunneling Method(NATM) systems were also utilized as empirical methods to characterize the tunnel ground and to determine the tunnel support design. The performance of the suggested empirical support design, induced stress distributions and deformations were analyzed by means of numerical modelling. Finally, it was concluded that the recommended stabilization technique was essential for the dynamic long-term stability and prevents the effects of failure. Additionally, the FEM method gives useful and reasonably reliable results in evaluating the stability of cut slopes and tunnels excavated both in continuous and discontinuous rock masses.
文摘A new kind of tunnel support was put forward on the basis of the anchor spraysupport principle. The mechanics of the new three-dimensional steel bar shotcrete liningsupport was studied and the structure's internal forces were analyzed. The model experiment was done relying on the industrial test. The conclusion of numerical calculationsproved that the ANSYS program is reasonable and creditable. It was compared to otherkinds of support that are commonly used in soft rock tunnels. The technique and economiccontrasts of the typical tunnel with support three-dimensional steel bar were completed.
基金supported by the Israel Ministry of Housing and Construction, through the National Building Research Institute at the Technion-Israel Institute of Technology, Israel
文摘This paper deals with the problem of tunneling effects on existing buildings. The direct solution,using the condensation method,is presented. This method allows the structural and geotechnical engineers to treat the problem separately and then assemble a relatively small matrix that can be solved directly,even within a spreadsheet. There are certain concerns that the resultant matrix may be ill-conditioned when the structure is very stiff. This paper suggests an alternative method that essentially relaxes the system from an infinitely rigid structure solution. As such,it does not encounter the problems associated with stiff systems. The two methods are evaluated for an example problem of tunneling below a framed structure. It is found that while the direct method may fail to predict reasonable values when the structure is extremely rigid,the alternative method is stable. The relaxation method can therefore be used in cases where there are concerns about the reliability of a direct solution.