The successful completion of the Zhengzhou-Xi'an high-speed railway project has greatly improved the construction level of China's large-section loess tunnels, and has resulted in significant progress being made in ...The successful completion of the Zhengzhou-Xi'an high-speed railway project has greatly improved the construction level of China's large-section loess tunnels, and has resulted in significant progress being made in both design theory and construction technology. This paper systematically summarizes the tech- nical characteristics and main problems of the large-section loess tunnels on China's high-speed railway, including classification of the surrounding rock, design of the supporting structure, surface settlement and cracking control, and safe and rapid construction methods. On this basis, the key construction tech- niques of loess tunnels with large sections for high-speed railway are expounded from the aspects of design and construction. The research results show that the classification of loess strata surrounding large tunnels should be based on the geological age of the loess, and be determined by combining the plastic index and the water content. In addition, the influence of the buried depth should be considered. During tunnel excavation disturbance, if the tensile stress exceeds the soil tensile or shear strength, the surface part of the sliding trend plane can be damaged, and visible cracks can form. The pressure of the surrounding rock of a large-section loess tunnel should be calculated according to the buried depth, using the corresponding formula. A three-bench seven-step excavation method of construction was used as the core technology system to ensure the safe and rapid construction of a large-section loess tunnel, following a field test to optimize the construction parameters and determine the engineering measures to stabilize the tunnel face. The conclusions and methods presented here are of great significance in revealing the strata and supporting mechanics of large-section loess tunnels, and in optimizing the supporting structure design and the technical parameters for construction.展开更多
The methodology of visual simulation for a tunnel engineering construction schedule is presented. Visualization of simulation model, calculation and result of construction schedule simulation is realized, and the cons...The methodology of visual simulation for a tunnel engineering construction schedule is presented. Visualization of simulation model, calculation and result of construction schedule simulation is realized, and the construction simulation and the resource optimization of tunnel engineering are made. A risk analysis and a decision-making method of tunnel engineering construction schedule based on visual simulation are presented. Furthermore, using S curve theory and schedule management method, the real-time management and control method of tunnel engineering construction based on visual simulation is presented. The application to the tunnel engineering construction schedule analysis and management shows the feasibility and effectiveness of the method presented in this paper.展开更多
文摘The successful completion of the Zhengzhou-Xi'an high-speed railway project has greatly improved the construction level of China's large-section loess tunnels, and has resulted in significant progress being made in both design theory and construction technology. This paper systematically summarizes the tech- nical characteristics and main problems of the large-section loess tunnels on China's high-speed railway, including classification of the surrounding rock, design of the supporting structure, surface settlement and cracking control, and safe and rapid construction methods. On this basis, the key construction tech- niques of loess tunnels with large sections for high-speed railway are expounded from the aspects of design and construction. The research results show that the classification of loess strata surrounding large tunnels should be based on the geological age of the loess, and be determined by combining the plastic index and the water content. In addition, the influence of the buried depth should be considered. During tunnel excavation disturbance, if the tensile stress exceeds the soil tensile or shear strength, the surface part of the sliding trend plane can be damaged, and visible cracks can form. The pressure of the surrounding rock of a large-section loess tunnel should be calculated according to the buried depth, using the corresponding formula. A three-bench seven-step excavation method of construction was used as the core technology system to ensure the safe and rapid construction of a large-section loess tunnel, following a field test to optimize the construction parameters and determine the engineering measures to stabilize the tunnel face. The conclusions and methods presented here are of great significance in revealing the strata and supporting mechanics of large-section loess tunnels, and in optimizing the supporting structure design and the technical parameters for construction.
基金Supported by National Natural Science Foundation of China (No.50539120)Natural Fund for Distinguished Young Scholars of China(No.50525927)
文摘The methodology of visual simulation for a tunnel engineering construction schedule is presented. Visualization of simulation model, calculation and result of construction schedule simulation is realized, and the construction simulation and the resource optimization of tunnel engineering are made. A risk analysis and a decision-making method of tunnel engineering construction schedule based on visual simulation are presented. Furthermore, using S curve theory and schedule management method, the real-time management and control method of tunnel engineering construction based on visual simulation is presented. The application to the tunnel engineering construction schedule analysis and management shows the feasibility and effectiveness of the method presented in this paper.