Since different underground engineering contains different geological conditions,structure and excavation methods,their disturbing degree on the ground also differs,but ground surface settlement caused by excavation h...Since different underground engineering contains different geological conditions,structure and excavation methods,their disturbing degree on the ground also differs,but ground surface settlement caused by excavation has one common point that they will form a ground surface settlement curve.Based on data statistical analysis,the article puts forward the relationship between point of inflection in digging tunnels with shallowburied method and the span of tunnel excavation against typical geological conditions in Changchun so as to predict the impact of tunnel excavation and improve reasonable ground surface settlement control standard.Research result will be useful for study on ground surface control standard in digging tunnels with shallow-buried method and setting settlement standard.展开更多
Large-scale physical model test of 30°inclined strata was conducted to investigate the damage mechanisms during the excavation and overloading using infrared detection.The experiment results were presented with t...Large-scale physical model test of 30°inclined strata was conducted to investigate the damage mechanisms during the excavation and overloading using infrared detection.The experiment results were presented with thermal images which were divided into three stages including a full face excavation stage,a staged excavation stage,and an overloading stage.The obtained results were compared with the previously reported results from horizontal,45?,60?,and vertical strata models.Infrared temperature(IRT)for 30°inclined strata model descended with multiple fluctuations during the full-face excavation.For the staged excavation,the excavation damage zone(EDZ)showed enhanced faulting-like strips as compared in the 45?,60?,and vertical models,indicating the intensified stress redistribution occurred in the adjacent rock mass.In contrast,EDZ for the horizontal strata existed in a plastic-formed manner.During the overloading,abnormal features in the thermal images were observed preceding the coalescence of the propagating cracks.The ultimate failure of the model was due primarily to the floor heave and the roof fall.展开更多
Several malfunctions of the shield tunneling machine (STM) caused by structural interference have been encountered in actual tunnel excavation. This paper is focusing on providing an effective method to avoid the st...Several malfunctions of the shield tunneling machine (STM) caused by structural interference have been encountered in actual tunnel excavation. This paper is focusing on providing an effective method to avoid the structural interference based on making the reachable and the required workspaces of the thrust system match each other. The main structure of the thrust mechanism is analyzed, and coordinate systems are built up to describe the pose and workspace of the thrust mechanism. Constraint conditions are derived and the formulation of each constraint condition is carried out to facilitate the analysis of the reachable workspace of the thrust mechanism. Meanwhile, a reachable workspace determination algorithm is introduced based on interval analysis method. The mathematical model for determining the required workspace of the thrust mechanism is presented based on the analysis of the process when the STM excavates along a specific tunnel axis. Two applications are included to show how to avoid these problems by choosing reasonable parameters of the designed tunnel axis and the key structural parameters of the thrust mechanism based on workspace matching.展开更多
文摘Since different underground engineering contains different geological conditions,structure and excavation methods,their disturbing degree on the ground also differs,but ground surface settlement caused by excavation has one common point that they will form a ground surface settlement curve.Based on data statistical analysis,the article puts forward the relationship between point of inflection in digging tunnels with shallowburied method and the span of tunnel excavation against typical geological conditions in Changchun so as to predict the impact of tunnel excavation and improve reasonable ground surface settlement control standard.Research result will be useful for study on ground surface control standard in digging tunnels with shallow-buried method and setting settlement standard.
基金supported by the National Key Research and Development Plan of China (Grant No. 2016YFC0600901)the National Natural Science Foundation of China (Grant Nos. 51374214, 51134005 & 51574248)+1 种基金the Special Fund of Basic Research and Operating of China University of Mining & Technology, Beijing (Grant No. 2009QL03)the State Scholarship Fund of China
文摘Large-scale physical model test of 30°inclined strata was conducted to investigate the damage mechanisms during the excavation and overloading using infrared detection.The experiment results were presented with thermal images which were divided into three stages including a full face excavation stage,a staged excavation stage,and an overloading stage.The obtained results were compared with the previously reported results from horizontal,45?,60?,and vertical strata models.Infrared temperature(IRT)for 30°inclined strata model descended with multiple fluctuations during the full-face excavation.For the staged excavation,the excavation damage zone(EDZ)showed enhanced faulting-like strips as compared in the 45?,60?,and vertical models,indicating the intensified stress redistribution occurred in the adjacent rock mass.In contrast,EDZ for the horizontal strata existed in a plastic-formed manner.During the overloading,abnormal features in the thermal images were observed preceding the coalescence of the propagating cracks.The ultimate failure of the model was due primarily to the floor heave and the roof fall.
基金supported by the National Natural Science Foundation of China (Grant No. 51605071)National Basic Research Program of China (Grant No. 2013CB035400)the special grade of the China Postdoctoral Science Foundation (Grant No. 2016T90218)
文摘Several malfunctions of the shield tunneling machine (STM) caused by structural interference have been encountered in actual tunnel excavation. This paper is focusing on providing an effective method to avoid the structural interference based on making the reachable and the required workspaces of the thrust system match each other. The main structure of the thrust mechanism is analyzed, and coordinate systems are built up to describe the pose and workspace of the thrust mechanism. Constraint conditions are derived and the formulation of each constraint condition is carried out to facilitate the analysis of the reachable workspace of the thrust mechanism. Meanwhile, a reachable workspace determination algorithm is introduced based on interval analysis method. The mathematical model for determining the required workspace of the thrust mechanism is presented based on the analysis of the process when the STM excavates along a specific tunnel axis. Two applications are included to show how to avoid these problems by choosing reasonable parameters of the designed tunnel axis and the key structural parameters of the thrust mechanism based on workspace matching.