In order to understand failure mechanisms of the tunnel excavated in the stratified rock masses in deep mine, the physical modeling experiment by using the large-scale model was carried out. The field case simulated i...In order to understand failure mechanisms of the tunnel excavated in the stratified rock masses in deep mine, the physical modeling experiment by using the large-scale model was carried out. The field case simulated in the experiment is a main connection tunnel located at depth of 1000 m in Qishan coal mine,Xuzhou mining district. Tunnel deformation was monitored by using strain gauges and a video camera simultaneously. Crack initiation and propagation process during the test were analyzed based on image analysis of the captured video photographs. At the same time, deformation process of the key monitoring points around the tunnel section is given by the monitored strain plots. Under the increasing external loads, crack initiation occurs firstly on the left wall of the tunnel, then on the immediate roof.Complete failure of the tunnel occurs as a result of the slippage of the rock layers along the interfaces.展开更多
To investigate the mechanical behavior of segmental lining, a three-dimensional numerical analysis and test using three actual segments were used to analyze the effects of axial force and reinforcement ratio on the fa...To investigate the mechanical behavior of segmental lining, a three-dimensional numerical analysis and test using three actual segments were used to analyze the effects of axial force and reinforcement ratio on the failure mechanism and ultimate bearing capacity of segmental lining. Both numerical and test results confirmed that the cracking load, yield and ultimate load were strongly influenced by axial force, and it was also proved that the yield and ultimate load would increase with the increase of reinforcement ratio, but the cracking load was almost not affected. The cracking load, yield and ultimate load are about 28.7%, 500% and 460% larger due to the effect of axial force respectively. The comparison between numerical calculation and test results showed that the finite element analysis resuits were in good agreement with the test results.展开更多
文摘In order to understand failure mechanisms of the tunnel excavated in the stratified rock masses in deep mine, the physical modeling experiment by using the large-scale model was carried out. The field case simulated in the experiment is a main connection tunnel located at depth of 1000 m in Qishan coal mine,Xuzhou mining district. Tunnel deformation was monitored by using strain gauges and a video camera simultaneously. Crack initiation and propagation process during the test were analyzed based on image analysis of the captured video photographs. At the same time, deformation process of the key monitoring points around the tunnel section is given by the monitored strain plots. Under the increasing external loads, crack initiation occurs firstly on the left wall of the tunnel, then on the immediate roof.Complete failure of the tunnel occurs as a result of the slippage of the rock layers along the interfaces.
基金Supported by National Natural Science Foundation of China (No. 10902073)
文摘To investigate the mechanical behavior of segmental lining, a three-dimensional numerical analysis and test using three actual segments were used to analyze the effects of axial force and reinforcement ratio on the failure mechanism and ultimate bearing capacity of segmental lining. Both numerical and test results confirmed that the cracking load, yield and ultimate load were strongly influenced by axial force, and it was also proved that the yield and ultimate load would increase with the increase of reinforcement ratio, but the cracking load was almost not affected. The cracking load, yield and ultimate load are about 28.7%, 500% and 460% larger due to the effect of axial force respectively. The comparison between numerical calculation and test results showed that the finite element analysis resuits were in good agreement with the test results.