In this study,the dynamic stress concentration factors(DSCF)around a straight-wall arch tunnel(SWAT)were solved analytically utilizing the complex variable function methods and Duhamel’s integral.The effects of wavel...In this study,the dynamic stress concentration factors(DSCF)around a straight-wall arch tunnel(SWAT)were solved analytically utilizing the complex variable function methods and Duhamel’s integral.The effects of wavelength,incident angle,and blasting rising time on the DSCF distribution were analyzed.Theoretical results pointed out dynamic disturbances resulting in compressive stress concentration in the vertical direction and tensile stress in the incident direction.As the wavelength and rising time increased,there was a tendency for the amplitude of stress concentration to initially rise and then converge.Moreover,a series of 3D FEM models were established to evaluate the effect of different initial stress states on the dynamic failure of the tunnel surrounding rock.The results indicated that the failure of the surrounding rock was significantly influenced by the direction of the static maximum principal stress and the direction of the dynamic disturbance.Under the coupling of static and blasting loading,damage around the tunnel was more prone to occur in the dynamic and static stress concentration coincidence zone.Finally,the damage modes of rock tunnel under static stress and blasting disturbance from different directions were summarized and a proposed support system was presented.The results reveal the mechanisms of deep-buried rock tunnel destruction and dynamically triggered rockburst.展开更多
In order to solve the urgent problem of how to manage and sustain highway tunnels with advanced information technology with the background of the rapid development in the modem traffic, and achieve the cost- effective...In order to solve the urgent problem of how to manage and sustain highway tunnels with advanced information technology with the background of the rapid development in the modem traffic, and achieve the cost- effectiveness optimal principle objectives under the premise of guaranteeing a smooth flow of traffic; a highway tunnel maintenance and management system framework and the key modules were proposed. First, the determined highway tunnel condition assessment index system was established according to the result of expert consulting forms. Secondly, the tunnel diseases, the corresponding maintenance measurements, and many-to-many relationship between diseases and maintenance measurements were introduced. Then, three kinds of 0-1 integer programming models were built according to different tunnel operators' needs in the optimization decision module. Finally, the further development and implementation of the system was prospected. The research results can provide references to tunnel researchers and managers.展开更多
Prediction of the state of roof collapse is a big challenge in tunnel engineering, while the limit analysis theory makes it possible to derive the analytical solutions of the collapse mechanisms. In this work, an exac...Prediction of the state of roof collapse is a big challenge in tunnel engineering, while the limit analysis theory makes it possible to derive the analytical solutions of the collapse mechanisms. In this work, an exact solution of collapsing shape in shallow underwater tunnel is obtained by using the variation principle and the upper bound theorem based on nonlinear failure criterion. Numerical results under the effect of river water and supporting pressure are derived and discussed. The maximum water depth above the river bottom surface is determined under a given buried depth of shallow cavities and the critical depth of roof collapse is obtained under a constant river depth. In comparison with the previous results, the present solution shows a good agreement with the practical results.展开更多
A quantum teleportation scheme to teleport a kind of tripartite entangled states of continuous variables by using a quantum channel composed of three bipartite entangled states is proposed. The joint Bell measurement ...A quantum teleportation scheme to teleport a kind of tripartite entangled states of continuous variables by using a quantum channel composed of three bipartite entangled states is proposed. The joint Bell measurement is feasible because the bipartite entangled states are complete and the squeezed state has a natural representation in the entangled state basis. The calculation is greatly simplified by using the Schmidt decomposition of the entangled states.展开更多
The distribution of water channels in the crystal morphology of type-α hemi-hydrated gypsum(α-HH) was theoretically detected to investigate the effect of water channels on the hydration reactivity of hemi-hydrate ph...The distribution of water channels in the crystal morphology of type-α hemi-hydrated gypsum(α-HH) was theoretically detected to investigate the effect of water channels on the hydration reactivity of hemi-hydrate phosphogypsum(HPG). Results showed that water channels were mainly distributed in the cylinders of α-HH crystal,whereas no water channel existed in the conical surfaces parallel to the z-axis. Increasing the number of water channels was critical to enhance the hydration activity of HPG compared with the hydration reactivity of industrial HPG and type-α high-strength gypsum. Controlling the technological parameters of crystallization by concentration of liquid-phase SO_4^(2-) made it possible to obtain HPG which had the stumpy crystals of α-HH and high hydration reactivity.展开更多
Large amount of groundwater discharging from tunnel is likely to cause destruction of the ecological environment in the vicinity of the tunnel, thus an appropriate drainage criterion should be established to balance t...Large amount of groundwater discharging from tunnel is likely to cause destruction of the ecological environment in the vicinity of the tunnel, thus an appropriate drainage criterion should be established to balance the tunnel construction and groundwater.To assess the related problems, an limiting drainage standard ranging from 0.5 to 2.0 m3/(m·d) was suggested for mountain tunnels based on survey and comparative analysis. After that, for the purpose of verifying the rationality of the standard, a calculated formula for dewatering funnel volume caused by drainage was deduced on the basis of the groundwater dynamics and experience method.Furthermore, the equation about the relationship between water discharge and drawdown of groundwater table was presented. The permeability coefficient, specific yield and groundwater table value were introduced, and then combined with the above equation, the drawdown of groundwater table under the proposed limiting drainage criterion was calculated. It is shown that the proposed drainage standard can reach the purpose of protecting ecological environment under the following two conditions. One is the permeability coefficient ranges from 10-4 to 10-5 m/s and the specific yield ranges from 0.1 to 0.001. The other is the permeability coefficient varies from 10-6 to 10-8 m/s and the specific yield varies from 0.1 to 0.01. In addition, a majority of common geotechnical layers are involved in the above ranges. Thus, the proposed limiting drainage standard which ranges from 0.5 to 2.0 m3/(m·d) for mountain tunnel is reasonable.展开更多
The reconstructed structures of Cu(100) surface induced by O2 dissociative adsorption were investigated by low energy electron diffraction and scanning tunneling microscopy. At lower oxygen coverage, it was found th...The reconstructed structures of Cu(100) surface induced by O2 dissociative adsorption were investigated by low energy electron diffraction and scanning tunneling microscopy. At lower oxygen coverage, it was found that two reconstructed structures, i.e. c(2×2)-O and (√2×2√2)R45°-O are coexistent. The domain size of the c(2×2)-O structure decreased with the increasing of O2 exposure. The reconstructed structure at very small coverage was also investigated and a “zigzag” structure was observed at this stage. The “zigzag” structure was identified as boundaries of local c(2×2) domains. It was found that the strip region shows much stronger molecule-substrate interaction than that of oxygen covered regions, making it a proper template for patterned organic films. The sequence of the thermal stability was found as zigzag structure〉c(2×2)〉(√2×2√2)R45°-O.展开更多
Pre-coding aided quadrature spatial modulation(PQSM) is a promising multiple input multiple output(MIMO) transmission technology. The multiuser(MU) detection in PQSM system is investigated in this paper. Based on the ...Pre-coding aided quadrature spatial modulation(PQSM) is a promising multiple input multiple output(MIMO) transmission technology. The multiuser(MU) detection in PQSM system is investigated in this paper. Based on the known channel state information, pre-coding matrix is designed to pre-process the in-phase and quadrature signals of quadrature spatial modulation(QSM) to reduce the inter-channel interference. In order to lower the complexity at the receiver brought by the orthogonality of the PQSM system, an orthogonal matching pursuit(OMP) detection algorithm and a reconstructed model are proposed. The analysis and simulation results show that the proposed algorithm can obtain a similar bit error rate(BER) performance as the maximum likelihood(ML) detection algorithm with more than 80% reduction of complexity.展开更多
Provided the results of a research conducted to investigate the relationships between the empirical vibration attenuation equation of Peak Particle Velocity (PPV) and the Scaled Charge (SC) through testing the bla...Provided the results of a research conducted to investigate the relationships between the empirical vibration attenuation equation of Peak Particle Velocity (PPV) and the Scaled Charge (SC) through testing the blasting-induced vibrations on the spot of Wanshishan tunnel based on 96 vibration recordings. It is found that the maximum charge amount per delay in Wanshishan tunnel excavating is determined by the buildings on the surface and the constructed tunnel nearby. Considering that the repeated blast loading in tunnel blasting caused accumulative effects of damage on buildings, comfortable threshold damage limits of PPV to maintain buildings safety was given. Dynamic Stress Ratio (DSR) was adopted to study the stability of constructed tunnel on the action of blasting induced vibrations. The method to determine specific maximum charge amount per delay in Wanshishan tunnel excavation was given. It is proved that the findings in this study are very effective to control the negative effects of blasting-induced vibrations on buildings on the surface and constructed tunnel nearby.展开更多
In this paper, taking AM-50 Road Heaer as an example, the metheds of structural dynamic modification optimization for road headers are studied using experimental modal analysis and physical parameters analysis. The ma...In this paper, taking AM-50 Road Heaer as an example, the metheds of structural dynamic modification optimization for road headers are studied using experimental modal analysis and physical parameters analysis. The machine’s modal model and lumped mass model are established and the vibration response simulation is calculated for the two models with the load spectral measured. On the above basis, the dynamic parameters of the models are optimised and some useful results have been obtained.The research methods in this paper can be used for the reference to the other lager type mining machines.展开更多
The prediction of the stress field of deep-buried tunnels is a fundamental problem for scientists and engineers. In this study, the authors put forward a systematic solution for this problem. Databases from the World ...The prediction of the stress field of deep-buried tunnels is a fundamental problem for scientists and engineers. In this study, the authors put forward a systematic solution for this problem. Databases from the World Stress Map and the Crustal Stress of China, and previous research findings can offer prediction of stress orientations in an engineering area. At the same time, the Andersonian theory can be used to analyze the possible stress orientation of a region. With limited in-situ stress measurements, the Hock-Brown Criterion can be used to estimate the strength of rock mass in an area of interest by utilizing the geotechnical investigation data, and the modified Sheorey's model can subsequently be employed to predict the areas' stress profile, without stress data, by taking the existing in-situ stress measurements as input parameters. In this paper, a case study was used to demonstrate the application of this systematic solution. The planned Kohala hydropower plant is located on the western edge of Qinghai-Tibet Plateau. Three hydro-fracturing stress measurement campaigns indicated that the stress state of the area is SH - Sh 〉 Sv or SH 〉Sv 〉 Sh. The measured orientation of Sn is NEE (N70.3°-89°E), and the regional orientation of SH from WSM is NE, which implies that the stress orientation of shallow crust may be affected by landforms. The modified Sheorey model was utilized to predict the stress profile along the water sewage tunnel for the plant. Prediction results show that the maximum and minimum horizontal principal stres- ses of the points with the greatest burial depth were up to 56.70 and 40.14 MPa, respectively, and the stresses of areas with a burial depth of greater than 500 m were higher. Based on the predicted stress data, large deformations of the rock mass surrounding water conveyance tunnels were analyzed. Results showed that the large deformations will occur when the burial depth exceeds 300 m. When the burial depth is beyond 800 m, serious squeezing deformations will occur in the surrounding rock masses, thus requiring more attention in the design and construction. Based on the application efficiency in this case study, this prediction method proposed in this paper functions accurately.展开更多
This paper investigates the generation and evolution of continuous-variable entanglement in an asymmetric coupled-quantum well (CQW) system. Our numerical results show that this CQW system can be regarded as a sourc...This paper investigates the generation and evolution of continuous-variable entanglement in an asymmetric coupled-quantum well (CQW) system. Our numerical results show that this CQW system can be regarded as a source of macroscopic entangled light over a wide range of initial states of the cavity field. This investigation can be used for achieving the macroscopic entangled light in the CQW solid-state medium, which is much more praeticaJ than that in an atomic medium because of its flexible design and the controllable interference strength.展开更多
In this study, we investigate the tunneling conductance at a finite temperature in a normal metal/ferromagnetic superconductor nano-junction where the ferromagnetic superconductor (FS) is in three different cooper p...In this study, we investigate the tunneling conductance at a finite temperature in a normal metal/ferromagnetic superconductor nano-junction where the ferromagnetic superconductor (FS) is in three different cooper pairing states: spin singlet s-wave pairing (SWP), spin triplet opposite spin pairing (OSP), and spin triplet equal spin pairing (ESP) while including Fermi wave mismatch (FWM) and effective mass mismatch (EMM) in two sides of the nano-junction. We find that the conductance shows clearly different behaviors all depending on the symmetries of cooper pairing in a manner that the conductance spectra shows a gap-like structure, two interior dips structure and zero bias peak for SWP, OSP, and ESP, respectively. Also, the effective FS gap (Δeff) is a linear and decreasing function of exchange field. The slope of (Δeff) versus exchange field for OSP is twice the SWP. Thus, we can determine the spin polarization of N/FS nano-junction based on the dependence of (Δeff) to exchange field.展开更多
Tunneling dynamics of multi-atomic molecules between atomic and multi-atomic molecular Bose-Einstein condensates with Feshbach resonance is investigated.It is indicated that the tunneling in the two Bose-Einstein cond...Tunneling dynamics of multi-atomic molecules between atomic and multi-atomic molecular Bose-Einstein condensates with Feshbach resonance is investigated.It is indicated that the tunneling in the two Bose-Einstein condensates depends on not only the inter-atomic-molecular nonlinear interactions and the initial number of atoms in these condensates,but also the tunneling coupling between the atomic condensate and the multi-atomic molecular condensate.It is discovered that besides oscillating tunneling current between the atomic condensate and the multi-atomic molecular condensate,the nonlinear multi-atomic molecular tunneling dynamics sustains a self-locked population imbalance:a macroscopic quantum self-trapping effect.The influence of de-coherence caused by non-condensate atoms on the tunneling dynamics is studied.It is shown that de-coherence suppresses the multi-atomic molecular tunneling.Moreover,the conception of the molecular Bose-Einstein condensate,which is different from the conventional single-atomic Bose-Einstein condensate,is specially emphasized in this paper.展开更多
In this paper, we study coherence-induced state ordering with Tsallis relative entropy of coherence, relative entropy of coherence and l1 norm of coherence, and give the sufficient conditions of the same state order i...In this paper, we study coherence-induced state ordering with Tsallis relative entropy of coherence, relative entropy of coherence and l1 norm of coherence, and give the sufficient conditions of the same state order induced by above coherence measures. First, we show that the above measures give the same ordering for single-qubit states in some special cases. Second, we consider some special states in a d-dimensional quantum system. We show that the above measures generate the same ordering for these special states. Finally, we discuss dynamics of coherence-induced state ordering under Markovian channels. We find amplitude damping channel changes the coherence-induced ordering even though for single-qubit states with fixed mixedness.展开更多
The pairing mechanism of high-temperature superconductivity in cuprates remains the biggest unresolved mystery in condensed matter physics. To solve the problem, one of the most effective approaches is to investigate ...The pairing mechanism of high-temperature superconductivity in cuprates remains the biggest unresolved mystery in condensed matter physics. To solve the problem, one of the most effective approaches is to investigate directly the superconducting CuO2 layers. Here, by growing CuO2 monolayer films on Bi2Sr2CaCu2O8+δ substrates, we identify two distinct and spatially separated energy gaps centered at the Fermi energy, a smaller U-like gap and a larger V-like gap on the films, and study their interactions with alien atoms by low-temperature scanning tunneling microscopy. The newly discovered U-like gap exhibits strong phase coherence and is immune to scattering by K, Cs and Ag atoms, suggesting its nature as a nodeless superconducting gap in the CuO2 layers, whereas the V-like gap agrees with the well-known pseudogap state in the underdoped regime. Our results support an s-wave superconductivity in Bi2Sr2CaCu2O8+δ, which, we pro- pose, originates from the modulation-doping resultant twodimensional hole liquid confined in the CuO2 layers.展开更多
We use scanning tunneling microscopy to visualize the atomic-scale electronic states induced by a pair of hole dopants in Ca_(2)CuO_(2)Cl_(2)parent Mott insulator of cuprates.We find that when the two dopants approach...We use scanning tunneling microscopy to visualize the atomic-scale electronic states induced by a pair of hole dopants in Ca_(2)CuO_(2)Cl_(2)parent Mott insulator of cuprates.We find that when the two dopants approach each other,the transfer of spectral weight from high energy Hubbard band to low energy ingap state creates a broad peak and nearly V-shaped gap around the Fermi level.The peak position shows a sudden drop at distance around 4 a_(0)and then remains almost constant.The in-gap states exhibit peculiar spatial distributions depending on the configuration of the two dopants relative to the underlying Cu lattice.These results shed important new lights on the evolution of low energy electronic states when a few holes are doped into parent cuprates.展开更多
We report on the preparation and superconductivity of metastable γ-Ga islands on Si(111) substrate. The Ga grows in a typical Volmer-Weber mode at a low temperature of 110 K, resulting in formation of Ga nanoislands ...We report on the preparation and superconductivity of metastable γ-Ga islands on Si(111) substrate. The Ga grows in a typical Volmer-Weber mode at a low temperature of 110 K, resulting in formation of Ga nanoislands at various sizes with the identical γ-phase. In-situ low temperature scanning tunneling spectra reveal quantized electronic states in ultrathin Ga islands. It is found that both the lateral size and thickness of the Ga islands strongly suppress the superconductivity. Due to substantial surface energy contribution, the transition temperature Tc scales inversely with the island thickness and the minimum thickness for the occurrence of superconductivity is calculated to be two monolayers.展开更多
基金Project(12072376)supported by the National Natural Science Foundation of ChinaPoject(10533220215858)supported by the Fundamental Research Funds for the Central Universities,China。
文摘In this study,the dynamic stress concentration factors(DSCF)around a straight-wall arch tunnel(SWAT)were solved analytically utilizing the complex variable function methods and Duhamel’s integral.The effects of wavelength,incident angle,and blasting rising time on the DSCF distribution were analyzed.Theoretical results pointed out dynamic disturbances resulting in compressive stress concentration in the vertical direction and tensile stress in the incident direction.As the wavelength and rising time increased,there was a tendency for the amplitude of stress concentration to initially rise and then converge.Moreover,a series of 3D FEM models were established to evaluate the effect of different initial stress states on the dynamic failure of the tunnel surrounding rock.The results indicated that the failure of the surrounding rock was significantly influenced by the direction of the static maximum principal stress and the direction of the dynamic disturbance.Under the coupling of static and blasting loading,damage around the tunnel was more prone to occur in the dynamic and static stress concentration coincidence zone.Finally,the damage modes of rock tunnel under static stress and blasting disturbance from different directions were summarized and a proposed support system was presented.The results reveal the mechanisms of deep-buried rock tunnel destruction and dynamically triggered rockburst.
基金The US National Science Foundation(No.CM M I-0408390,CM M I-0644552)the National Natural Science Foundation of China(No.U1134206,51250110075,51150110478)+1 种基金the Western Project of M inistry of Communications of China(No.0901005C)the Natural Science Foundation of Jiangsu Province(No.BK200910046)
文摘In order to solve the urgent problem of how to manage and sustain highway tunnels with advanced information technology with the background of the rapid development in the modem traffic, and achieve the cost- effectiveness optimal principle objectives under the premise of guaranteeing a smooth flow of traffic; a highway tunnel maintenance and management system framework and the key modules were proposed. First, the determined highway tunnel condition assessment index system was established according to the result of expert consulting forms. Secondly, the tunnel diseases, the corresponding maintenance measurements, and many-to-many relationship between diseases and maintenance measurements were introduced. Then, three kinds of 0-1 integer programming models were built according to different tunnel operators' needs in the optimization decision module. Finally, the further development and implementation of the system was prospected. The research results can provide references to tunnel researchers and managers.
基金Foundation item: Project(2013CB036004) supported by the National Basic Research Program of China Project(51178468) supported by the National Natural Science Foundation of China Project(2013zzts235) supported by Research Foundation of Central South University, China
文摘Prediction of the state of roof collapse is a big challenge in tunnel engineering, while the limit analysis theory makes it possible to derive the analytical solutions of the collapse mechanisms. In this work, an exact solution of collapsing shape in shallow underwater tunnel is obtained by using the variation principle and the upper bound theorem based on nonlinear failure criterion. Numerical results under the effect of river water and supporting pressure are derived and discussed. The maximum water depth above the river bottom surface is determined under a given buried depth of shallow cavities and the critical depth of roof collapse is obtained under a constant river depth. In comparison with the previous results, the present solution shows a good agreement with the practical results.
文摘A quantum teleportation scheme to teleport a kind of tripartite entangled states of continuous variables by using a quantum channel composed of three bipartite entangled states is proposed. The joint Bell measurement is feasible because the bipartite entangled states are complete and the squeezed state has a natural representation in the entangled state basis. The calculation is greatly simplified by using the Schmidt decomposition of the entangled states.
基金Supported by the Guizhou Province Fund Project(2014)7618
文摘The distribution of water channels in the crystal morphology of type-α hemi-hydrated gypsum(α-HH) was theoretically detected to investigate the effect of water channels on the hydration reactivity of hemi-hydrate phosphogypsum(HPG). Results showed that water channels were mainly distributed in the cylinders of α-HH crystal,whereas no water channel existed in the conical surfaces parallel to the z-axis. Increasing the number of water channels was critical to enhance the hydration activity of HPG compared with the hydration reactivity of industrial HPG and type-α high-strength gypsum. Controlling the technological parameters of crystallization by concentration of liquid-phase SO_4^(2-) made it possible to obtain HPG which had the stumpy crystals of α-HH and high hydration reactivity.
基金Projects(51078359,51208522,51208523)supported by the National Natural Science Foundation of ChinaProject(2010-122-009)supported by the Traffic Science and Technology Fund of Guizhou Province,ChinaProject(CX2011B098)supported by the Postgraduate Research Innovation Fund of Hunan Province,China
文摘Large amount of groundwater discharging from tunnel is likely to cause destruction of the ecological environment in the vicinity of the tunnel, thus an appropriate drainage criterion should be established to balance the tunnel construction and groundwater.To assess the related problems, an limiting drainage standard ranging from 0.5 to 2.0 m3/(m·d) was suggested for mountain tunnels based on survey and comparative analysis. After that, for the purpose of verifying the rationality of the standard, a calculated formula for dewatering funnel volume caused by drainage was deduced on the basis of the groundwater dynamics and experience method.Furthermore, the equation about the relationship between water discharge and drawdown of groundwater table was presented. The permeability coefficient, specific yield and groundwater table value were introduced, and then combined with the above equation, the drawdown of groundwater table under the proposed limiting drainage criterion was calculated. It is shown that the proposed drainage standard can reach the purpose of protecting ecological environment under the following two conditions. One is the permeability coefficient ranges from 10-4 to 10-5 m/s and the specific yield ranges from 0.1 to 0.001. The other is the permeability coefficient varies from 10-6 to 10-8 m/s and the specific yield varies from 0.1 to 0.01. In addition, a majority of common geotechnical layers are involved in the above ranges. Thus, the proposed limiting drainage standard which ranges from 0.5 to 2.0 m3/(m·d) for mountain tunnel is reasonable.
基金ACKNOWLEDGMENT This work was supported by the National Natural Science Foundation of China (No.60506019).
文摘The reconstructed structures of Cu(100) surface induced by O2 dissociative adsorption were investigated by low energy electron diffraction and scanning tunneling microscopy. At lower oxygen coverage, it was found that two reconstructed structures, i.e. c(2×2)-O and (√2×2√2)R45°-O are coexistent. The domain size of the c(2×2)-O structure decreased with the increasing of O2 exposure. The reconstructed structure at very small coverage was also investigated and a “zigzag” structure was observed at this stage. The “zigzag” structure was identified as boundaries of local c(2×2) domains. It was found that the strip region shows much stronger molecule-substrate interaction than that of oxygen covered regions, making it a proper template for patterned organic films. The sequence of the thermal stability was found as zigzag structure〉c(2×2)〉(√2×2√2)R45°-O.
基金partially supported by the National Natural Science Foundation of China (Grant No. 61701063)Scientific and Technological Research Program of Chongqing Municipal Education Commission (No. KJ1600435)
文摘Pre-coding aided quadrature spatial modulation(PQSM) is a promising multiple input multiple output(MIMO) transmission technology. The multiuser(MU) detection in PQSM system is investigated in this paper. Based on the known channel state information, pre-coding matrix is designed to pre-process the in-phase and quadrature signals of quadrature spatial modulation(QSM) to reduce the inter-channel interference. In order to lower the complexity at the receiver brought by the orthogonality of the PQSM system, an orthogonal matching pursuit(OMP) detection algorithm and a reconstructed model are proposed. The analysis and simulation results show that the proposed algorithm can obtain a similar bit error rate(BER) performance as the maximum likelihood(ML) detection algorithm with more than 80% reduction of complexity.
基金Supported by the National Natural Science Foundation of China(50974059)
文摘Provided the results of a research conducted to investigate the relationships between the empirical vibration attenuation equation of Peak Particle Velocity (PPV) and the Scaled Charge (SC) through testing the blasting-induced vibrations on the spot of Wanshishan tunnel based on 96 vibration recordings. It is found that the maximum charge amount per delay in Wanshishan tunnel excavating is determined by the buildings on the surface and the constructed tunnel nearby. Considering that the repeated blast loading in tunnel blasting caused accumulative effects of damage on buildings, comfortable threshold damage limits of PPV to maintain buildings safety was given. Dynamic Stress Ratio (DSR) was adopted to study the stability of constructed tunnel on the action of blasting induced vibrations. The method to determine specific maximum charge amount per delay in Wanshishan tunnel excavation was given. It is proved that the findings in this study are very effective to control the negative effects of blasting-induced vibrations on buildings on the surface and constructed tunnel nearby.
文摘In this paper, taking AM-50 Road Heaer as an example, the metheds of structural dynamic modification optimization for road headers are studied using experimental modal analysis and physical parameters analysis. The machine’s modal model and lumped mass model are established and the vibration response simulation is calculated for the two models with the load spectral measured. On the above basis, the dynamic parameters of the models are optimised and some useful results have been obtained.The research methods in this paper can be used for the reference to the other lager type mining machines.
基金provided by the National Natural Science Foundation of China – China (No. 41274100)the Fundamental Research Fund for State Level Scientific Institutes (No. ZDJ2012-20)
文摘The prediction of the stress field of deep-buried tunnels is a fundamental problem for scientists and engineers. In this study, the authors put forward a systematic solution for this problem. Databases from the World Stress Map and the Crustal Stress of China, and previous research findings can offer prediction of stress orientations in an engineering area. At the same time, the Andersonian theory can be used to analyze the possible stress orientation of a region. With limited in-situ stress measurements, the Hock-Brown Criterion can be used to estimate the strength of rock mass in an area of interest by utilizing the geotechnical investigation data, and the modified Sheorey's model can subsequently be employed to predict the areas' stress profile, without stress data, by taking the existing in-situ stress measurements as input parameters. In this paper, a case study was used to demonstrate the application of this systematic solution. The planned Kohala hydropower plant is located on the western edge of Qinghai-Tibet Plateau. Three hydro-fracturing stress measurement campaigns indicated that the stress state of the area is SH - Sh 〉 Sv or SH 〉Sv 〉 Sh. The measured orientation of Sn is NEE (N70.3°-89°E), and the regional orientation of SH from WSM is NE, which implies that the stress orientation of shallow crust may be affected by landforms. The modified Sheorey model was utilized to predict the stress profile along the water sewage tunnel for the plant. Prediction results show that the maximum and minimum horizontal principal stres- ses of the points with the greatest burial depth were up to 56.70 and 40.14 MPa, respectively, and the stresses of areas with a burial depth of greater than 500 m were higher. Based on the predicted stress data, large deformations of the rock mass surrounding water conveyance tunnels were analyzed. Results showed that the large deformations will occur when the burial depth exceeds 300 m. When the burial depth is beyond 800 m, serious squeezing deformations will occur in the surrounding rock masses, thus requiring more attention in the design and construction. Based on the application efficiency in this case study, this prediction method proposed in this paper functions accurately.
基金The project supported in part by Natural Science Foundation of China under Grant Nos. 10575040, 10634060, 10874050, and 10704017 ; National Foundation Research Program of China under Grant No. 2005CB724508; the Foundation from the Ministry of the National Education of China under Grant No. 200804870051 ; the Science Innovation Foundation of Huazhong University of Science and Technology under Grant No. HF-06-011-12-012
文摘This paper investigates the generation and evolution of continuous-variable entanglement in an asymmetric coupled-quantum well (CQW) system. Our numerical results show that this CQW system can be regarded as a source of macroscopic entangled light over a wide range of initial states of the cavity field. This investigation can be used for achieving the macroscopic entangled light in the CQW solid-state medium, which is much more praeticaJ than that in an atomic medium because of its flexible design and the controllable interference strength.
文摘In this study, we investigate the tunneling conductance at a finite temperature in a normal metal/ferromagnetic superconductor nano-junction where the ferromagnetic superconductor (FS) is in three different cooper pairing states: spin singlet s-wave pairing (SWP), spin triplet opposite spin pairing (OSP), and spin triplet equal spin pairing (ESP) while including Fermi wave mismatch (FWM) and effective mass mismatch (EMM) in two sides of the nano-junction. We find that the conductance shows clearly different behaviors all depending on the symmetries of cooper pairing in a manner that the conductance spectra shows a gap-like structure, two interior dips structure and zero bias peak for SWP, OSP, and ESP, respectively. Also, the effective FS gap (Δeff) is a linear and decreasing function of exchange field. The slope of (Δeff) versus exchange field for OSP is twice the SWP. Thus, we can determine the spin polarization of N/FS nano-junction based on the dependence of (Δeff) to exchange field.
基金湖南省高校青年骨干教师培养基金,the Science Research Fund of Educational Bureau of Hunan Province of China
文摘Tunneling dynamics of multi-atomic molecules between atomic and multi-atomic molecular Bose-Einstein condensates with Feshbach resonance is investigated.It is indicated that the tunneling in the two Bose-Einstein condensates depends on not only the inter-atomic-molecular nonlinear interactions and the initial number of atoms in these condensates,but also the tunneling coupling between the atomic condensate and the multi-atomic molecular condensate.It is discovered that besides oscillating tunneling current between the atomic condensate and the multi-atomic molecular condensate,the nonlinear multi-atomic molecular tunneling dynamics sustains a self-locked population imbalance:a macroscopic quantum self-trapping effect.The influence of de-coherence caused by non-condensate atoms on the tunneling dynamics is studied.It is shown that de-coherence suppresses the multi-atomic molecular tunneling.Moreover,the conception of the molecular Bose-Einstein condensate,which is different from the conventional single-atomic Bose-Einstein condensate,is specially emphasized in this paper.
基金Supported by National Natural Science Foundation of China under Grant Nos.11671244The Higher School Doctoral Subject Foundation of Ministry of Education of China under Grant No.20130202110001Fundamental Research Funds for the Central Universities under Grant No.2016CBY003
文摘In this paper, we study coherence-induced state ordering with Tsallis relative entropy of coherence, relative entropy of coherence and l1 norm of coherence, and give the sufficient conditions of the same state order induced by above coherence measures. First, we show that the above measures give the same ordering for single-qubit states in some special cases. Second, we consider some special states in a d-dimensional quantum system. We show that the above measures generate the same ordering for these special states. Finally, we discuss dynamics of coherence-induced state ordering under Markovian channels. We find amplitude damping channel changes the coherence-induced ordering even though for single-qubit states with fixed mixedness.
基金Acknowledgments The work was financially supported by the National Natural Science Foundation, Ministry of Science and Technology and Ministry of Education of China. The work at Brookhaven National Laboratory was supported by the Office of Basic Energy Sciences, US Department of Energy, under Contract No. DE- SC00112704.
文摘The pairing mechanism of high-temperature superconductivity in cuprates remains the biggest unresolved mystery in condensed matter physics. To solve the problem, one of the most effective approaches is to investigate directly the superconducting CuO2 layers. Here, by growing CuO2 monolayer films on Bi2Sr2CaCu2O8+δ substrates, we identify two distinct and spatially separated energy gaps centered at the Fermi energy, a smaller U-like gap and a larger V-like gap on the films, and study their interactions with alien atoms by low-temperature scanning tunneling microscopy. The newly discovered U-like gap exhibits strong phase coherence and is immune to scattering by K, Cs and Ag atoms, suggesting its nature as a nodeless superconducting gap in the CuO2 layers, whereas the V-like gap agrees with the well-known pseudogap state in the underdoped regime. Our results support an s-wave superconductivity in Bi2Sr2CaCu2O8+δ, which, we pro- pose, originates from the modulation-doping resultant twodimensional hole liquid confined in the CuO2 layers.
基金the National Program on Key Basic Research Project of China(973 Program)(2017YFA0302900)the Basic Science Center Project of the National Natural Science Foundation of China(51788104)supported in part by the Beijing Advanced Innovation Center for Future Chip(ICFC)。
文摘We use scanning tunneling microscopy to visualize the atomic-scale electronic states induced by a pair of hole dopants in Ca_(2)CuO_(2)Cl_(2)parent Mott insulator of cuprates.We find that when the two dopants approach each other,the transfer of spectral weight from high energy Hubbard band to low energy ingap state creates a broad peak and nearly V-shaped gap around the Fermi level.The peak position shows a sudden drop at distance around 4 a_(0)and then remains almost constant.The in-gap states exhibit peculiar spatial distributions depending on the configuration of the two dopants relative to the underlying Cu lattice.These results shed important new lights on the evolution of low energy electronic states when a few holes are doped into parent cuprates.
基金supported by the National Natural Science Foundation of China(Grant No.11374336)
文摘We report on the preparation and superconductivity of metastable γ-Ga islands on Si(111) substrate. The Ga grows in a typical Volmer-Weber mode at a low temperature of 110 K, resulting in formation of Ga nanoislands at various sizes with the identical γ-phase. In-situ low temperature scanning tunneling spectra reveal quantized electronic states in ultrathin Ga islands. It is found that both the lateral size and thickness of the Ga islands strongly suppress the superconductivity. Due to substantial surface energy contribution, the transition temperature Tc scales inversely with the island thickness and the minimum thickness for the occurrence of superconductivity is calculated to be two monolayers.