In this paper, new basic functions, which are composed of three basic Jacobi elliptic functions, are chosen as components of finite expansion. This finite expansion can be taken as an ansatz and applied to solve nonli...In this paper, new basic functions, which are composed of three basic Jacobi elliptic functions, are chosen as components of finite expansion. This finite expansion can be taken as an ansatz and applied to solve nonlinear wave equations. As an example, mKdV equation is solved, and more new rational form solutions are derived, such as periodic solutions of rational form, solitary wave solutions of rational form, and so on.展开更多
By using the modified mapping method, we find new exact solutions of the Petviashvili equation. The solutions obtained in this paper include Jacobian elliptic function solutions, combined Jacobian elliptic function so...By using the modified mapping method, we find new exact solutions of the Petviashvili equation. The solutions obtained in this paper include Jacobian elliptic function solutions, combined Jacobian elliptic function solutions, soliton solutions, triangular function solutions.展开更多
In this paper, by applying the Jacobi elliptic function expansion method, the periodic solutions for three nonlinear differential-difference equations are obtained.
We develop an Hm-conforming(m 1) spectral element method on multi-dimensional domain associated with the partition into multi-dimensional rectangles. We construct a set of basis functions on the interval [-1, 1] that ...We develop an Hm-conforming(m 1) spectral element method on multi-dimensional domain associated with the partition into multi-dimensional rectangles. We construct a set of basis functions on the interval [-1, 1] that are made up of the generalized Jacobi polynomials(GJPs) and the nodal basis functions.So the basis functions on multi-dimensional rectangles consist of the tensorial product of the basis functions on the interval [-1, 1]. Then we construct the spectral element interpolation operator and prove the associated interpolation error estimates. Finally, we apply the H2-conforming spectral element method to the Helmholtz transmission eigenvalues that is a hot problem in the field of engineering and mathematics.展开更多
For any positive integers n and m, H_(n,m):= H_n× C^(m,n) is called the Siegel-Jacobi space, with the Jacobi group acting on it. The Jacobi forms are defined on this space. We compute the Chern connection of the ...For any positive integers n and m, H_(n,m):= H_n× C^(m,n) is called the Siegel-Jacobi space, with the Jacobi group acting on it. The Jacobi forms are defined on this space. We compute the Chern connection of the Siegel-Jacobi space and use it to obtain derivations of Jacobi forms. Using these results, we construct a series of invariant differential operators for Siegel-Jacobi forms. Also two kinds of Maass-Shimura type differential operators for H_(n,m) are obtained.展开更多
基金The project supported by National Natural Science Foundation of China under Grant No.40305006the Ministry of Science and Technology of China through Special Public Welfare Project under Grant No.2002DIB20070
文摘In this paper, new basic functions, which are composed of three basic Jacobi elliptic functions, are chosen as components of finite expansion. This finite expansion can be taken as an ansatz and applied to solve nonlinear wave equations. As an example, mKdV equation is solved, and more new rational form solutions are derived, such as periodic solutions of rational form, solitary wave solutions of rational form, and so on.
基金the State Key Basic Research Program of China under Grant No.2004CB418304
文摘By using the modified mapping method, we find new exact solutions of the Petviashvili equation. The solutions obtained in this paper include Jacobian elliptic function solutions, combined Jacobian elliptic function solutions, soliton solutions, triangular function solutions.
基金The project supported by National Natural Science Foundation of China under Grant Nos.90511009 and 40305006
文摘In this paper, by applying the Jacobi elliptic function expansion method, the periodic solutions for three nonlinear differential-difference equations are obtained.
基金supported by the Educational Innovation Program of Guizhou Province for Graduate Students (Grant No. KYJJ[2016]01)National Natural Science Foundation of China (Grant No. 11561014)
文摘We develop an Hm-conforming(m 1) spectral element method on multi-dimensional domain associated with the partition into multi-dimensional rectangles. We construct a set of basis functions on the interval [-1, 1] that are made up of the generalized Jacobi polynomials(GJPs) and the nodal basis functions.So the basis functions on multi-dimensional rectangles consist of the tensorial product of the basis functions on the interval [-1, 1]. Then we construct the spectral element interpolation operator and prove the associated interpolation error estimates. Finally, we apply the H2-conforming spectral element method to the Helmholtz transmission eigenvalues that is a hot problem in the field of engineering and mathematics.
基金supported by National Natural Science Foundation of China(Grant No.11271212)
文摘For any positive integers n and m, H_(n,m):= H_n× C^(m,n) is called the Siegel-Jacobi space, with the Jacobi group acting on it. The Jacobi forms are defined on this space. We compute the Chern connection of the Siegel-Jacobi space and use it to obtain derivations of Jacobi forms. Using these results, we construct a series of invariant differential operators for Siegel-Jacobi forms. Also two kinds of Maass-Shimura type differential operators for H_(n,m) are obtained.