Recent changes occurred in terminus of the debris-covered Bilafond Glacier in the Karakoram Range in the Himalayas, Northern Pakistan was investigated in this research. Landsat MSS, TM and ETM+ images were used for th...Recent changes occurred in terminus of the debris-covered Bilafond Glacier in the Karakoram Range in the Himalayas, Northern Pakistan was investigated in this research. Landsat MSS, TM and ETM+ images were used for this study. Digital elevation models derived from ASTER GDEM and SRTM were also utilized. Visible, infrared and thermal infrared channels were utilized in order to get accurate glacier change maps. Three methods were tried to map this debris-covered glacier in this research. The glacier has been mapped successfully and the changes in the glacier terminus from 1978 to 2011 have been calculated. Manual, semi-automatic and thermal methods were found to give similar results. It was found that the glacier has undergone serious ablation during this period despite of the fact that many of the larger glaciers in the Hindu Kush and Karakoram mountain regions in the Upper Indus Basin were reported to be expanding. The terminus has been moved back about 600 meters during this period and there was an abrupt change in the glacier terminus during 1990-2002. We propose that debris thickness is not the only factor that influences the glacier ablation but the altitude of the debris-covered glacier as well. Many glaciers in the Karakoram region reported to be expanding were having higher altitudes compared to the study area.展开更多
Glaciers in the Himalaya are often heavily covered with supraglacial debris,making them difficult to study with remotely-sensed imagery alone.Various methods such as band ratios can be used effectively to map clean-ic...Glaciers in the Himalaya are often heavily covered with supraglacial debris,making them difficult to study with remotely-sensed imagery alone.Various methods such as band ratios can be used effectively to map clean-ice glaciers;however,a thicker layer of debris often makes it impossible to distinguish between supraglacial debris and the surrounding terrain.Previously,a morphometric mapping approach employing an ASTER-derived digital elevation model has been used to map glaciers in the Khumbu Himal and the Tien Shan.This study on glaciers in the Greater Himalaya Range in Zanskar,southern Ladakh,aims (i) to use the morphometric approach to map large debris-covered glaciers;and (ii) to use Landsat and ASTER data and GPS and field measurements to document glacier change over the past four decades.Field work was carried out in the summers of 2008.For clean ice,band ratios from the ASTER dataset were used to distinguish glacial features.For debris-covered glaciers,topographic features such as slope were combined with thermal imagery and supervised classifiers to map glacial margins.The method is promising for large glaciers,although problems occurred in the distal and lateral parts and in the fore field of the glaciers.A multi-temporal analysis of glaciers in Zanskar showed that in general they have receded since at least the mid-to late-1970s.However,some few glaciers that advanced or oscillated - probably because of specific local environmental conditions - do exist.展开更多
基金Rio Grande do Sul State Foundation for Research (FAPERGS), Brazil for financial support
文摘Recent changes occurred in terminus of the debris-covered Bilafond Glacier in the Karakoram Range in the Himalayas, Northern Pakistan was investigated in this research. Landsat MSS, TM and ETM+ images were used for this study. Digital elevation models derived from ASTER GDEM and SRTM were also utilized. Visible, infrared and thermal infrared channels were utilized in order to get accurate glacier change maps. Three methods were tried to map this debris-covered glacier in this research. The glacier has been mapped successfully and the changes in the glacier terminus from 1978 to 2011 have been calculated. Manual, semi-automatic and thermal methods were found to give similar results. It was found that the glacier has undergone serious ablation during this period despite of the fact that many of the larger glaciers in the Hindu Kush and Karakoram mountain regions in the Upper Indus Basin were reported to be expanding. The terminus has been moved back about 600 meters during this period and there was an abrupt change in the glacier terminus during 1990-2002. We propose that debris thickness is not the only factor that influences the glacier ablation but the altitude of the debris-covered glacier as well. Many glaciers in the Karakoram region reported to be expanding were having higher altitudes compared to the study area.
基金the generosity of The University of Montana and the German Research Foundation (DFGBU 949/15-1)a research fellowship from the Alexander von Humboldt Foundation awarded to Ulrich Kamp
文摘Glaciers in the Himalaya are often heavily covered with supraglacial debris,making them difficult to study with remotely-sensed imagery alone.Various methods such as band ratios can be used effectively to map clean-ice glaciers;however,a thicker layer of debris often makes it impossible to distinguish between supraglacial debris and the surrounding terrain.Previously,a morphometric mapping approach employing an ASTER-derived digital elevation model has been used to map glaciers in the Khumbu Himal and the Tien Shan.This study on glaciers in the Greater Himalaya Range in Zanskar,southern Ladakh,aims (i) to use the morphometric approach to map large debris-covered glaciers;and (ii) to use Landsat and ASTER data and GPS and field measurements to document glacier change over the past four decades.Field work was carried out in the summers of 2008.For clean ice,band ratios from the ASTER dataset were used to distinguish glacial features.For debris-covered glaciers,topographic features such as slope were combined with thermal imagery and supervised classifiers to map glacial margins.The method is promising for large glaciers,although problems occurred in the distal and lateral parts and in the fore field of the glaciers.A multi-temporal analysis of glaciers in Zanskar showed that in general they have receded since at least the mid-to late-1970s.However,some few glaciers that advanced or oscillated - probably because of specific local environmental conditions - do exist.