The Yalu Tsangpo River basin is a typical semi-arid and cold region in the Qinghai-Tibet Plateau, where significant climate change has been detected in the past decades. The objective of this paper is to demonstrate h...The Yalu Tsangpo River basin is a typical semi-arid and cold region in the Qinghai-Tibet Plateau, where significant climate change has been detected in the past decades. The objective of this paper is to demonstrate how the regional vegetation, especially the typical plant types, responds to the climate changes. In this study, the model of gravity center has been firstly introduced to analyze the spatial-temporal relationship between NDVI and climate factors considering the time-lag effect. The results show that the vegetation grown has been positively influenced by the rainfall and precipitation both in moving tracks of gravity center and time-lag effect especially for the growing season during the past thirteen years. The herbs and shrubs are inclined to be influenced by the change of rainfall and temperature, which is indicated by larger positive correlation coefficients at the 0.05 confidence level and shorter lagging time. For the soil moisture, the significantly negative relationship of NDV-PDI indicates that the growth and productivity of the vegetation are closely related to the short-term soil water, with the correlation coefficients reaching the maximum value of o.81 at Lag 0-1. Among the typicalvegetation types of plateau, the shrubs of low mountain, steppe and meadow are more sensitive to the change of soil moisture with coefficients of -0.95, -0.93, -0.92, respectively. These findings reveal that the spatial and temporal heterogeneity between NDVI and climatic factors are of great ecological significance and practical value for the protection of eco-environment in Qinghai-Tibet Plateau.展开更多
A small-sized meta-basic rock system is discovered in Qilongwuru Gully of Central Qiangtang’s Shuanghu region and contains a meta-basalt and garnet-bearing plagioclase amphibolite.The zircon U/Pb age of this meta-bas...A small-sized meta-basic rock system is discovered in Qilongwuru Gully of Central Qiangtang’s Shuanghu region and contains a meta-basalt and garnet-bearing plagioclase amphibolite.The zircon U/Pb age of this meta-basalt by SHRIMP analysis is463.3±4.7 Ma,suggesting that this lava formed in the Middle Ordovician,and is consistent with that of the meta-basic rocks in the Taoxing Lake and Guoganjianian Mountain ophiolite found in the Qiangtang plate.As this lava system bears similar geochemistry to N-MORB,it might be a component of ophiolite that represents the trail of the extinction of the Proto-Tethys,suggesting that the formation of Proto-Tethys oceanic basin in the Longmu Co-Shuanghu suture zone could date as far back as to the Middle Ordovician.Isotopic geochemical analysis indicates that the magma source area consists of both depleted mantle(DM)and enriched mantle(EMII)end members and bears Dupal anomaly,similar to that of the Paleo-Tethys in the Neo-Tethys represented by the Yarlung-Tsangpo suture zone,the Paleo-Tethys represented by the Changning-Menglian suture zone,and the Paleo-Tethys in Sanjiang region.This suggests that they have inherited the attribute of the Proto-Tethys mantle domain,and the Longmu Co-Shuanghu suture zone may be a representative of the northern boundary of Gondwana.展开更多
基金funded by the National Natural Science Foundation of China (Grant No. 41201441, No. 41371363, and No. 41301501)Guangxi Key Laboratory of Spatial Information and Geomatics (Grant No. 1207115-18)the knowledge innovation project of the Chinese academy of sciences (Grant Nos. KZCX2YW-333, KZCXZ-EW-317)
文摘The Yalu Tsangpo River basin is a typical semi-arid and cold region in the Qinghai-Tibet Plateau, where significant climate change has been detected in the past decades. The objective of this paper is to demonstrate how the regional vegetation, especially the typical plant types, responds to the climate changes. In this study, the model of gravity center has been firstly introduced to analyze the spatial-temporal relationship between NDVI and climate factors considering the time-lag effect. The results show that the vegetation grown has been positively influenced by the rainfall and precipitation both in moving tracks of gravity center and time-lag effect especially for the growing season during the past thirteen years. The herbs and shrubs are inclined to be influenced by the change of rainfall and temperature, which is indicated by larger positive correlation coefficients at the 0.05 confidence level and shorter lagging time. For the soil moisture, the significantly negative relationship of NDV-PDI indicates that the growth and productivity of the vegetation are closely related to the short-term soil water, with the correlation coefficients reaching the maximum value of o.81 at Lag 0-1. Among the typicalvegetation types of plateau, the shrubs of low mountain, steppe and meadow are more sensitive to the change of soil moisture with coefficients of -0.95, -0.93, -0.92, respectively. These findings reveal that the spatial and temporal heterogeneity between NDVI and climatic factors are of great ecological significance and practical value for the protection of eco-environment in Qinghai-Tibet Plateau.
基金supported by the Bangonghu-Nujiang Fundamental Geology Comprehensive Research Program(Grant No.1212011086068)Geological Comparison Program of Tibetan Plateau with Its Neighboring Tethys(Grant No.1212011121256)National Natural Science Foundation of China(Grant Nos.41303043&41273047)
文摘A small-sized meta-basic rock system is discovered in Qilongwuru Gully of Central Qiangtang’s Shuanghu region and contains a meta-basalt and garnet-bearing plagioclase amphibolite.The zircon U/Pb age of this meta-basalt by SHRIMP analysis is463.3±4.7 Ma,suggesting that this lava formed in the Middle Ordovician,and is consistent with that of the meta-basic rocks in the Taoxing Lake and Guoganjianian Mountain ophiolite found in the Qiangtang plate.As this lava system bears similar geochemistry to N-MORB,it might be a component of ophiolite that represents the trail of the extinction of the Proto-Tethys,suggesting that the formation of Proto-Tethys oceanic basin in the Longmu Co-Shuanghu suture zone could date as far back as to the Middle Ordovician.Isotopic geochemical analysis indicates that the magma source area consists of both depleted mantle(DM)and enriched mantle(EMII)end members and bears Dupal anomaly,similar to that of the Paleo-Tethys in the Neo-Tethys represented by the Yarlung-Tsangpo suture zone,the Paleo-Tethys represented by the Changning-Menglian suture zone,and the Paleo-Tethys in Sanjiang region.This suggests that they have inherited the attribute of the Proto-Tethys mantle domain,and the Longmu Co-Shuanghu suture zone may be a representative of the northern boundary of Gondwana.