期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
集合结构的实时故障诊断方法研究 被引量:2
1
作者 杨青 李桥 +1 位作者 刘璐 张金格 《沈阳理工大学学报》 CAS 2014年第6期7-11,共5页
为提高工业系统故障诊断的速度和准确性,提出一种由数据实时预处理、增量式故障特征提取、在线分类与聚类组成的实时故障诊断集合结构。基于该结构,提出了一系列实时故障诊断方法,开发了相应的实验研究平台。以青霉素实验过程为例,实验... 为提高工业系统故障诊断的速度和准确性,提出一种由数据实时预处理、增量式故障特征提取、在线分类与聚类组成的实时故障诊断集合结构。基于该结构,提出了一系列实时故障诊断方法,开发了相应的实验研究平台。以青霉素实验过程为例,实验采用提升小波方法预处理、递归主元方法特征提取、递归最小二乘支持向量机分类的集合型实时故障诊断方法进行实验研究。实验结果表明,集合结构的实时故障诊断方法的性能优于传统的单一结构的故障诊断方法。 展开更多
关键词 故障诊断 实时故障诊断 集合故障诊断
下载PDF
基于提升小波和递推LSSVM的实时故障诊断方法 被引量:24
2
作者 杨青 田枫 +2 位作者 王大志 吴东升 王安娜 《仪器仪表学报》 EI CAS CSCD 北大核心 2011年第3期596-602,共7页
提出了一种基于提升小波(LW)与递推最小二乘支持向量机(RLSSVM)相集合的实时故障诊断方法(LW-RLSSVM)。该方法首先通过提升小波变换对数据实时去噪,再通过实时算法训练最小二乘支持向量机分类器。由于采用了递推算法,节省了存储空间和... 提出了一种基于提升小波(LW)与递推最小二乘支持向量机(RLSSVM)相集合的实时故障诊断方法(LW-RLSSVM)。该方法首先通过提升小波变换对数据实时去噪,再通过实时算法训练最小二乘支持向量机分类器。由于采用了递推算法,节省了存储空间和运算时间,同时增加了诊断模型的适应性。为验证所提方法的有效性,将LW-RLSSVM应用于TE过程和青霉素发酵过程。实验结果表明,LW-RLSSVM集合方法能有效实现实时故障诊断,在诊断速度和适应性方面,优于基于第一代小波与LSSVM相集合(W-LSSVM)的故障诊断方法;在诊断精度等方面,该方法优于LSSVM、RLSSVM等方法。 展开更多
关键词 实时故障诊断 提升小波 递推SVM 集合故障诊断 LW-RLSSVM
下载PDF
基于DSC-BiGRU的化工过程故障诊断
3
作者 杨青 于桂仙 +1 位作者 刘彦俏 吴东升 《沈阳理工大学学报》 CAS 2022年第5期6-12,共7页
针对化工过程数据具有动态时序性以及少数故障特征不明显难以进行故障诊断问题,本文将深度可分离卷积(DSC)和双向门控循环单元(BiGRU)相结合,提出基于DSC-BiGRU的集合型故障诊断方法。首先,对数据进行归一化处理并输入DSC网络提取空域特... 针对化工过程数据具有动态时序性以及少数故障特征不明显难以进行故障诊断问题,本文将深度可分离卷积(DSC)和双向门控循环单元(BiGRU)相结合,提出基于DSC-BiGRU的集合型故障诊断方法。首先,对数据进行归一化处理并输入DSC网络提取空域特征,并将数据降维;再将DSC的输出作为BiGRU的输入,通过BiGRU从两个方向提取时域特征;最后,通过全连接层(FC)进行故障诊断。经田纳西-伊士曼(TE)过程验证,该方法较传统方法能够有效提升化工过程的故障诊断精度。 展开更多
关键词 故障诊断 深度可分离卷积 双向门控循环单元 集合故障诊断 田纳西-伊士曼过程
下载PDF
Hologamous integrating strategies for incipient fault diagnosis of transformer
4
作者 周建华 胡敏强 唐国庆 《Journal of Southeast University(English Edition)》 EI CAS 2004年第4期503-507,共5页
This paper studied an integrative fault diagnostic system on the power transformer. On-line monitor items were grounded current of iron core, internal partial discharge and oil dissolved gas. Diagnostic techniques wer... This paper studied an integrative fault diagnostic system on the power transformer. On-line monitor items were grounded current of iron core, internal partial discharge and oil dissolved gas. Diagnostic techniques were simple rule-based judgment, fuzzy logistic reasoning and neural network distinguishing. Considering that much faults information was interactional, intellectualized diagnosis was implemented based on integrating the neural network with the expert system. Hologamous integrating strategies were materialized by information-based integrating monitor devices, shared information database on several levels and fusion diagnosis software along thought patterns. The expert system practiced logic thought by logistic reasoning. The neural network realized image thought by model matching. Creative conclusion was educed by their integrating. The diagnosis example showed that the integrative diagnostic system was reasonable and practical. 展开更多
关键词 Database systems Expert systems Fourier transforms Fuzzy control MONITORING Neural networks Program diagnostics
下载PDF
Application of complete ensemble intrinsic time-scale decomposition and least-square SVM optimized using hybrid DE and PSO to fault diagnosis of diesel engines 被引量:7
5
作者 Jun-hong ZHANG Yu LIU 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2017年第2期272-286,共15页
Targeting the mode-mixing problem of intrinsic time-scale decomposition (ITD) and the parameter optimization problem of least-square support vector machine (LSSVM), we propose a novel approach based on complete en... Targeting the mode-mixing problem of intrinsic time-scale decomposition (ITD) and the parameter optimization problem of least-square support vector machine (LSSVM), we propose a novel approach based on complete ensemble intrinsic time-scale decomposition (CEITD) and LSSVM optimized by the hybrid differential evolution and particle swarm optimization (HDEPSO) algorithm for the identification of the fault in a diesel engine. The approach consists mainly of three stages. First, to solve the mode-mixing problem of ITD, a novel CEITD method is proposed. Then the CEITD method is used to decompose the nonstationary vibration signal into a set of stationary proper rotation components (PRCs) and a residual signal. Second, three typical types of time-frequency features, namely singular values, PRCs energy and energy entropy, and AR model parameters, are extracted from the first several PRCs and used as the fault feature vectors. Finally, a HDEPSO algorithm is proposed for the parameter optimization of LSSVM, and the fault diagnosis results can be obtained by inputting the fault feature vectors into the HDEPSO-LSSVM classifier. Simulation and experimental results demonstrate that the proposed fault diagnosis approach can overcome the mode-mixing problem of ITD and accurately identify the fault patterns of diesel engines. 展开更多
关键词 Diesel Fault diagnosis Complete ensemble intrinsic time-scale decomposition (CE1TD) l east square supportvector machine (LSSVM) Hybrid differential evolution and particle swarm optimization (HDEPSO)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部