The experimental study of natural convection in allglass evacuated tube solar collectors is performed through the experimental platform of the solar-assisted fuel cell system.The experimental facility includes solar c...The experimental study of natural convection in allglass evacuated tube solar collectors is performed through the experimental platform of the solar-assisted fuel cell system.The experimental facility includes solar collectors with different length and diameter tubes, different coating materials, and with / without guide plates, respectively. Threedimensional mathematical models on natural and forced convections in the solar collectors are established and the experimental data is validated by field synergy and entransy principles. The results of natural convection show that the water temperature increases and thermal efficiency decreases gradually with the evacuated tube length. The thermal efficiency increases when absorption rates increase from 0. 95 to 1. 0 and emission rates decrease from 0. 16 to 0. 06. The thermal efficiency of solar collectors is increased after being equipped with the guide plate, which is attributed to the disappearance of the mixed flowand the enhancement of the heat transfer at the bottom of the evacuated tube. The results of forced convertion indicate that the Reynolds, Nusselt and entransy increments of the horizontal double collectors are higher than those of the vertical single collector while the entransy dissipation is lower than that of the vertical single collector. It is concluded that the solar collectors with guide plates are suitable for natural convection while the double horizontal collectors are suitable for forced convection in the thermal field of solar-assisted fuel cell systems with lowand medium temperatures.展开更多
To investigate migration and evolution rules of coarse aggregates in the static compaction process, an algorithm of generating digital coarse aggregates that can reflect real morphology( such as shape, size and fract...To investigate migration and evolution rules of coarse aggregates in the static compaction process, an algorithm of generating digital coarse aggregates that can reflect real morphology( such as shape, size and fracture surface) of aggregate particles, is represented by polyhedral particles based on the discrete element method( DEM). A digital specimen comprised of aggregates and air voids is developed. In addition,a static compaction model consisting of a digital specimen and three plates is constructed and a series of evaluation indices such as mean contact force σMCF, wall stress in direction of zcoordinate σWSZZ, porosity and coordination numbers are presented to investigate the motion rules of coarse aggregates at different compaction displacements of 7. 5, 15 and 30 mm. The three-dimensional static compaction model is also verified with laboratory measurements. The results indicate that the compaction displacements are positively related to σMCF and σWSZZ, which increase gradually with the increase in iterative steps. When the compaction proceeds, the digital specimen porosity decreases, but the coordination number increases. The variation ranges of these four indices are different at different compaction displacements. This study provides a method to analyze the compaction mechanism of particle materials such as asphalt mixture and graded broken stone.展开更多
A glass crusher was developed to improve the waste glass crushing process.The waste glass was recycled,crushed and sieved to different particle sizes as glass aggregates,and the surface of glass aggregates was treated...A glass crusher was developed to improve the waste glass crushing process.The waste glass was recycled,crushed and sieved to different particle sizes as glass aggregates,and the surface of glass aggregates was treated by nano-Fe2O3 suspension to improve the anti-striping property.The glasphalt mixture made by partly replacing mineral aggregates with glass aggregates was designed and evaluated.The sizes of glass aggregates were selected to be 2.36 and 4.75 mm,and the optimum concentration of nano-Fe2O3 suspension was determined to be 10%.The optimum asphalt content(OAC)was determined by the Marshall method and the glass aggregate content.The influence of the glass aggregate content on the technical properties of glasphalt mixtures were analyzed by the rutting test,three-point bending test,freeze-thaw splitting test and skid resistance test.The results show that the optimal content of glass aggregates and OAC are recommended to be 15%and 4.4%,respectively.These environmentally-friendly glasphalt mixtures can solve the problem of environmental pollution caused by waste glass,as well as reducing the cost of pavement materials and construction.展开更多
The study presented an analysis accessing the feasibility of using concrete containing marginal aggregates in concrete pavement slabs. The physical properties of aggregates were first determined and concrete was produ...The study presented an analysis accessing the feasibility of using concrete containing marginal aggregates in concrete pavement slabs. The physical properties of aggregates were first determined and concrete was produced from them. Marginal aggregates were found to have higher fines, absorption, soundness loss, micro-Deval abrasion loss, LA (Los Angeles) abrasion loss and lower specific gravity and unit weight when compared with standard aggregates. Workability of concrete containing marginal aggregate was found to be similar to concrete containing normal aggregates when Shilstone mix design method was used to optimize the concrete mixes. The compressive strength, splitting tensile, flexural strength and modulus of elasticity of concrete containing marginal aggregates were determined and found to be generally lower than concrete containing standard aggregates. A typical concrete pavement in Florida was modeled in FEACONSIV (finite element analysis of concrete slab) software developed at the University of Florida. Laboratory determined mechanical and thermal properties of concrete were inputted in FEACONS IV and analyzed for maximum induced stresses. Critical stress to strength ratios, i.e., ratio between maximum computed stresses obtained from FEACONS IV to modulus of rupture (strength) of concrete, was used as evaluation criterion for different concrete pavement mixes. It was found that, in general, concrete containing marginal aggregates have higher stress to strength ratios as compared with concrete containing standard aggregates.展开更多
Geopolymer-lightweight aggregate refractory concrete (GLARC) was prepared with geopolymer and lightweight aggregate. The mechanical property and heat-resistance (950 ℃) of GLARC were investigated. The effects of size...Geopolymer-lightweight aggregate refractory concrete (GLARC) was prepared with geopolymer and lightweight aggregate. The mechanical property and heat-resistance (950 ℃) of GLARC were investigated. The effects of size of aggregate and mass ratio of geopolymer to aggregate on mechanical and thermal properties were also studied. The results show that the highest compressive strength of the heated refractory concrete is 43.3 MPa,and the strength loss is only 42%. The mechanical property and heat-resistance are influenced by the thickness of geopolymer covered with aggregate,which can be expressed as the quantity of geopolymer on per surface area of aggregate. In order to show the relationship between the thickness of geopolymer covered with aggregate and the thermal property of concrete,equal thickness model is presented,which provides a reference for the mix design of GLARC. For the haydite sand with size of 1.18-4.75 mm,the best amount of geopolymer per surface area of aggregate should be in the range of 0.300-0.500 mg/mm2.展开更多
In Japan, residential FCs (fuel cells) are being introduced not only in detached houses but also in collective housing. In this context, the effects of FC introduction (e.g., primary energy savings) should be quan...In Japan, residential FCs (fuel cells) are being introduced not only in detached houses but also in collective housing. In this context, the effects of FC introduction (e.g., primary energy savings) should be quantitatively evaluated, but this has not been done sufficiently for collective housing, particularly with regard to demand variability. Here, the authors propose a method taking into account demand variability to evaluate the effects of FC introduction into collective housing, based on a finite set of observational demand data. The method provides a new viewpoint for evaluating the effects of FC introduction. Numerical simulation results based on real-world data indicate the validity of these effects in terms of primary energy savings and CO2 reduction considering demand variability.展开更多
The application of ensemble optimal interpolation in wave data assimilation in the South China Sea is presented. A sampling strategy for a stationary ensemble is first discussed. The stationary ensemble is constructed...The application of ensemble optimal interpolation in wave data assimilation in the South China Sea is presented. A sampling strategy for a stationary ensemble is first discussed. The stationary ensemble is constructed by sampling from 24-h-interval significant wave height differences of model outputs over a long period,and is validated with altimeter significant wave height data,indicating that the ensemble errors have nearly the same probability distribution function. The background error covariance fields expressed by the ensemble sampled are anisotropic. Updating the static samples by season,the seasonal characteristics of the correlation coefficient distribution are reflected. Hindcast experiments including assimilation and control runs are conducted for the summer of 2010 in the South China Sea. The effect of ensemble optimal interpolation assimilation on wave hindcasts is validated using different satellite altimeter data(Jason-1 and 2 and ENVISAT) and buoy observations. It is found that the ensemble-optimal-interpolation-based wave assimilation scheme for the South China Sea achieves improvements similar to those of the previous optimal-interpolation-based scheme,indicating that the practical application of this computationally cheap ensemble method is feasible.展开更多
In this work, we demonstrate the assembly of oxidised carbon nanohybrids(o CNHs) with a commercial cellulose membrane for solid-state supercapacitors. The o CNHs–cellulose membranes were prepared by filtering a water...In this work, we demonstrate the assembly of oxidised carbon nanohybrids(o CNHs) with a commercial cellulose membrane for solid-state supercapacitors. The o CNHs–cellulose membranes were prepared by filtering a water dispersion of o CNHs through the cellulose membrane. The o CNHs were derived from carbon nanotubes via a modified Hummer's method and contained both closed tubes and unzipped tubes, which indicated a hybrid geometrical structure. The solid-state supercapacitor based on the o CNHs–cellulose membranes showed a high areal capacitance of *75 m F/cm^2 at a low scan rate(5 m V/s)and excellent stability for 1,000 cycles.展开更多
Data on breeding ecology of a color-band marked population of the ground tit Parus humilis were collected in north Qinghai on the Tibetan plateau, during 2008 and 2009. In spring the birds excavated 0.8-3.2 m long nes...Data on breeding ecology of a color-band marked population of the ground tit Parus humilis were collected in north Qinghai on the Tibetan plateau, during 2008 and 2009. In spring the birds excavated 0.8-3.2 m long nesting burrows under the ground. First-egg laying occurred between late April and late June during which a pair produced one brood. Incubation was done by female alone for 15-16 days and nestling-feeding by both sexes and helpers in any for 23-25 days. Average brood size at fledging was 5.8 (+ 1.4 SD, 3-8) and all the 27 observed nesting attempts fledged at least one young. At the population level, brood sex ratio did not differ from 1:1. The birds are a territory-living resident, with annual resight rates being 48% (22 of 46) in adult breeders and 10% (7 of 67) in yearlings. Pairs were socially monogamous, of which 23% (9 of 40) contained one and some- times two male helpers, most likely being philopatric sons of the breeders. The formation of cooperative groups is similar to the population in central Tibet but differs from that in south Guansu where breeding ground tits exhibit a high level of annual turnover展开更多
The agglomeration characteristics of river sand and wheat stalk ash mixture at various temperatures are investi- gated using a muffle furnace. The surface structural changes, as well as the elemental makeup of the sur...The agglomeration characteristics of river sand and wheat stalk ash mixture at various temperatures are investi- gated using a muffle furnace. The surface structural changes, as well as the elemental makeup of the surface and cross-section of the agglomerates, are analyzed by polarized light microscopy, scanning electron microscopy (SEM), and energy dispersive X-ray (EDX). Multi-phase equilibrium calculation is performed with FactSage in identifying the melting behavior of the river sand-wheat stalk ash mixture at high temperatures. No indication of agglomeration is detected below 850~C. At a temperature of 900-1000~C, however, obvious agglomeration is observed and the agglomerates solidify further as temperature increases. The presence of potassium and calcium enrichment causes the formation of a sticky sand surface that induces agglomeration. The main component of the agglomerate surface is KEO-42aO-SiO2, which melts at low temperatures. The formation of molten silicates causes particle cohesion. The main ingredient of the binding phase in the cross-section is K20-SiO2-Na20- Al2Oa--CaO; the agglomeration is not the result of the melting behavior of wheat stalk ash itself but the compre- hensive results of chemical reaction and the melting behavior at high temperatures. The multi-phase equilibrium calculations agree well with the experimental results.展开更多
基金The National Natural Science Foundation of China(No.51376110,51541604)the Major International(Regional) Joint Research Project of the National Natural Science Foundation of China(No.61320106011)
文摘The experimental study of natural convection in allglass evacuated tube solar collectors is performed through the experimental platform of the solar-assisted fuel cell system.The experimental facility includes solar collectors with different length and diameter tubes, different coating materials, and with / without guide plates, respectively. Threedimensional mathematical models on natural and forced convections in the solar collectors are established and the experimental data is validated by field synergy and entransy principles. The results of natural convection show that the water temperature increases and thermal efficiency decreases gradually with the evacuated tube length. The thermal efficiency increases when absorption rates increase from 0. 95 to 1. 0 and emission rates decrease from 0. 16 to 0. 06. The thermal efficiency of solar collectors is increased after being equipped with the guide plate, which is attributed to the disappearance of the mixed flowand the enhancement of the heat transfer at the bottom of the evacuated tube. The results of forced convertion indicate that the Reynolds, Nusselt and entransy increments of the horizontal double collectors are higher than those of the vertical single collector while the entransy dissipation is lower than that of the vertical single collector. It is concluded that the solar collectors with guide plates are suitable for natural convection while the double horizontal collectors are suitable for forced convection in the thermal field of solar-assisted fuel cell systems with lowand medium temperatures.
基金The National Natural Science Foundation of China(No.51108081)
文摘To investigate migration and evolution rules of coarse aggregates in the static compaction process, an algorithm of generating digital coarse aggregates that can reflect real morphology( such as shape, size and fracture surface) of aggregate particles, is represented by polyhedral particles based on the discrete element method( DEM). A digital specimen comprised of aggregates and air voids is developed. In addition,a static compaction model consisting of a digital specimen and three plates is constructed and a series of evaluation indices such as mean contact force σMCF, wall stress in direction of zcoordinate σWSZZ, porosity and coordination numbers are presented to investigate the motion rules of coarse aggregates at different compaction displacements of 7. 5, 15 and 30 mm. The three-dimensional static compaction model is also verified with laboratory measurements. The results indicate that the compaction displacements are positively related to σMCF and σWSZZ, which increase gradually with the increase in iterative steps. When the compaction proceeds, the digital specimen porosity decreases, but the coordination number increases. The variation ranges of these four indices are different at different compaction displacements. This study provides a method to analyze the compaction mechanism of particle materials such as asphalt mixture and graded broken stone.
基金The Project of the Department of Science&Technology of Shaanxi Province(No.2016KJXX-69,2016ZDJC-24,2017KCT-13)China Postdoctoral Science Foundation(No.2017M620434)the Special Fund for Basic Scientific Research of Central College of Chang’an University(No.310821153502,310821173501)
文摘A glass crusher was developed to improve the waste glass crushing process.The waste glass was recycled,crushed and sieved to different particle sizes as glass aggregates,and the surface of glass aggregates was treated by nano-Fe2O3 suspension to improve the anti-striping property.The glasphalt mixture made by partly replacing mineral aggregates with glass aggregates was designed and evaluated.The sizes of glass aggregates were selected to be 2.36 and 4.75 mm,and the optimum concentration of nano-Fe2O3 suspension was determined to be 10%.The optimum asphalt content(OAC)was determined by the Marshall method and the glass aggregate content.The influence of the glass aggregate content on the technical properties of glasphalt mixtures were analyzed by the rutting test,three-point bending test,freeze-thaw splitting test and skid resistance test.The results show that the optimal content of glass aggregates and OAC are recommended to be 15%and 4.4%,respectively.These environmentally-friendly glasphalt mixtures can solve the problem of environmental pollution caused by waste glass,as well as reducing the cost of pavement materials and construction.
文摘The study presented an analysis accessing the feasibility of using concrete containing marginal aggregates in concrete pavement slabs. The physical properties of aggregates were first determined and concrete was produced from them. Marginal aggregates were found to have higher fines, absorption, soundness loss, micro-Deval abrasion loss, LA (Los Angeles) abrasion loss and lower specific gravity and unit weight when compared with standard aggregates. Workability of concrete containing marginal aggregate was found to be similar to concrete containing normal aggregates when Shilstone mix design method was used to optimize the concrete mixes. The compressive strength, splitting tensile, flexural strength and modulus of elasticity of concrete containing marginal aggregates were determined and found to be generally lower than concrete containing standard aggregates. A typical concrete pavement in Florida was modeled in FEACONSIV (finite element analysis of concrete slab) software developed at the University of Florida. Laboratory determined mechanical and thermal properties of concrete were inputted in FEACONS IV and analyzed for maximum induced stresses. Critical stress to strength ratios, i.e., ratio between maximum computed stresses obtained from FEACONS IV to modulus of rupture (strength) of concrete, was used as evaluation criterion for different concrete pavement mixes. It was found that, in general, concrete containing marginal aggregates have higher stress to strength ratios as compared with concrete containing standard aggregates.
基金Project(2009CB623201) supported by the National Basic Research Program of ChinaProject(G0510) supported by the Key Laboratory for Refractories and High-temperature Ceramics of Hubei Province, China
文摘Geopolymer-lightweight aggregate refractory concrete (GLARC) was prepared with geopolymer and lightweight aggregate. The mechanical property and heat-resistance (950 ℃) of GLARC were investigated. The effects of size of aggregate and mass ratio of geopolymer to aggregate on mechanical and thermal properties were also studied. The results show that the highest compressive strength of the heated refractory concrete is 43.3 MPa,and the strength loss is only 42%. The mechanical property and heat-resistance are influenced by the thickness of geopolymer covered with aggregate,which can be expressed as the quantity of geopolymer on per surface area of aggregate. In order to show the relationship between the thickness of geopolymer covered with aggregate and the thermal property of concrete,equal thickness model is presented,which provides a reference for the mix design of GLARC. For the haydite sand with size of 1.18-4.75 mm,the best amount of geopolymer per surface area of aggregate should be in the range of 0.300-0.500 mg/mm2.
文摘In Japan, residential FCs (fuel cells) are being introduced not only in detached houses but also in collective housing. In this context, the effects of FC introduction (e.g., primary energy savings) should be quantitatively evaluated, but this has not been done sufficiently for collective housing, particularly with regard to demand variability. Here, the authors propose a method taking into account demand variability to evaluate the effects of FC introduction into collective housing, based on a finite set of observational demand data. The method provides a new viewpoint for evaluating the effects of FC introduction. Numerical simulation results based on real-world data indicate the validity of these effects in terms of primary energy savings and CO2 reduction considering demand variability.
基金Supported by the National Special Research Fund for Non-Profit Marine Sector(Nos.201005033,201105002)the National Natural Science Foundation of China(No.U1133001)+1 种基金the National High Technology Research and Development Program of China(863 Program)(No.2012AA091801)the NSFC-Shandong Joint Fund for Marine Science Research Centers(No.U1406401)
文摘The application of ensemble optimal interpolation in wave data assimilation in the South China Sea is presented. A sampling strategy for a stationary ensemble is first discussed. The stationary ensemble is constructed by sampling from 24-h-interval significant wave height differences of model outputs over a long period,and is validated with altimeter significant wave height data,indicating that the ensemble errors have nearly the same probability distribution function. The background error covariance fields expressed by the ensemble sampled are anisotropic. Updating the static samples by season,the seasonal characteristics of the correlation coefficient distribution are reflected. Hindcast experiments including assimilation and control runs are conducted for the summer of 2010 in the South China Sea. The effect of ensemble optimal interpolation assimilation on wave hindcasts is validated using different satellite altimeter data(Jason-1 and 2 and ENVISAT) and buoy observations. It is found that the ensemble-optimal-interpolation-based wave assimilation scheme for the South China Sea achieves improvements similar to those of the previous optimal-interpolation-based scheme,indicating that the practical application of this computationally cheap ensemble method is feasible.
基金supported by Faculty of Engineering,The University of New South Wales and the Australian Research Council Discovery Project(DP160103244)
文摘In this work, we demonstrate the assembly of oxidised carbon nanohybrids(o CNHs) with a commercial cellulose membrane for solid-state supercapacitors. The o CNHs–cellulose membranes were prepared by filtering a water dispersion of o CNHs through the cellulose membrane. The o CNHs were derived from carbon nanotubes via a modified Hummer's method and contained both closed tubes and unzipped tubes, which indicated a hybrid geometrical structure. The solid-state supercapacitor based on the o CNHs–cellulose membranes showed a high areal capacitance of *75 m F/cm^2 at a low scan rate(5 m V/s)and excellent stability for 1,000 cycles.
文摘Data on breeding ecology of a color-band marked population of the ground tit Parus humilis were collected in north Qinghai on the Tibetan plateau, during 2008 and 2009. In spring the birds excavated 0.8-3.2 m long nesting burrows under the ground. First-egg laying occurred between late April and late June during which a pair produced one brood. Incubation was done by female alone for 15-16 days and nestling-feeding by both sexes and helpers in any for 23-25 days. Average brood size at fledging was 5.8 (+ 1.4 SD, 3-8) and all the 27 observed nesting attempts fledged at least one young. At the population level, brood sex ratio did not differ from 1:1. The birds are a territory-living resident, with annual resight rates being 48% (22 of 46) in adult breeders and 10% (7 of 67) in yearlings. Pairs were socially monogamous, of which 23% (9 of 40) contained one and some- times two male helpers, most likely being philopatric sons of the breeders. The formation of cooperative groups is similar to the population in central Tibet but differs from that in south Guansu where breeding ground tits exhibit a high level of annual turnover
基金supported by National Natural Science Foundation of China(Project Code:50706055)
文摘The agglomeration characteristics of river sand and wheat stalk ash mixture at various temperatures are investi- gated using a muffle furnace. The surface structural changes, as well as the elemental makeup of the surface and cross-section of the agglomerates, are analyzed by polarized light microscopy, scanning electron microscopy (SEM), and energy dispersive X-ray (EDX). Multi-phase equilibrium calculation is performed with FactSage in identifying the melting behavior of the river sand-wheat stalk ash mixture at high temperatures. No indication of agglomeration is detected below 850~C. At a temperature of 900-1000~C, however, obvious agglomeration is observed and the agglomerates solidify further as temperature increases. The presence of potassium and calcium enrichment causes the formation of a sticky sand surface that induces agglomeration. The main component of the agglomerate surface is KEO-42aO-SiO2, which melts at low temperatures. The formation of molten silicates causes particle cohesion. The main ingredient of the binding phase in the cross-section is K20-SiO2-Na20- Al2Oa--CaO; the agglomeration is not the result of the melting behavior of wheat stalk ash itself but the compre- hensive results of chemical reaction and the melting behavior at high temperatures. The multi-phase equilibrium calculations agree well with the experimental results.