将奇异值分解(singular value decomposition,简称SVD)与集合经验模态分解(ensemble empirical mode decomposition,简称EEMD)进行结合,提出一种适用于滚动轴承弱故障状态描述的敏感特征提取方法。为提高信号故障信息的提取质量,对采集...将奇异值分解(singular value decomposition,简称SVD)与集合经验模态分解(ensemble empirical mode decomposition,简称EEMD)进行结合,提出一种适用于滚动轴承弱故障状态描述的敏感特征提取方法。为提高信号故障信息的提取质量,对采集信号进行相空间重构得到一种Hankel矩阵。根据该矩阵的奇异值差分谱,确定降噪阶次进行SVD降燥。用EEMD分解降噪后的信号可获得11个本征模态函数(intrinsic mode function,简称IMF)和1个余项。依据建立的峭度-均方差准则,筛选出一个能够有效描述故障状态的敏感IMF分量,计算其相应的Teager能量算子(Teager energy operator,简称TEO),对此TEO进行Fourier变换,实现了对滚动轴承弱故障模式的有效辨识。用美国凯斯西储大学公开的滚动轴承故障信号对所建立的方法与传统EEMD-Hilbert法和EEMD-TEO方法进行对比,结果表明:经本方法提取的敏感特征能准确突显滚动轴承故障频率发生的周期性冲击,可准确识别其故障类型。展开更多
文摘将奇异值分解(singular value decomposition,简称SVD)与集合经验模态分解(ensemble empirical mode decomposition,简称EEMD)进行结合,提出一种适用于滚动轴承弱故障状态描述的敏感特征提取方法。为提高信号故障信息的提取质量,对采集信号进行相空间重构得到一种Hankel矩阵。根据该矩阵的奇异值差分谱,确定降噪阶次进行SVD降燥。用EEMD分解降噪后的信号可获得11个本征模态函数(intrinsic mode function,简称IMF)和1个余项。依据建立的峭度-均方差准则,筛选出一个能够有效描述故障状态的敏感IMF分量,计算其相应的Teager能量算子(Teager energy operator,简称TEO),对此TEO进行Fourier变换,实现了对滚动轴承弱故障模式的有效辨识。用美国凯斯西储大学公开的滚动轴承故障信号对所建立的方法与传统EEMD-Hilbert法和EEMD-TEO方法进行对比,结果表明:经本方法提取的敏感特征能准确突显滚动轴承故障频率发生的周期性冲击,可准确识别其故障类型。