针对LEM2(Learning from Examples Module,Version 2)算法处理不完备信息系统的局限性,从规则提取的质量和效率两个方面对其进行改进,提出改进的LEM2规则提取算法.基于集对理论,引入集对势容差关系和基于集对势容差关系的扩充粗糙集模型...针对LEM2(Learning from Examples Module,Version 2)算法处理不完备信息系统的局限性,从规则提取的质量和效率两个方面对其进行改进,提出改进的LEM2规则提取算法.基于集对理论,引入集对势容差关系和基于集对势容差关系的扩充粗糙集模型,将该模型和LEM2算法相结合,提高规则提取的质量;定义冗余的属性-值对集合,在规则提取过程中,从候选属性-值对集中直接删除冗余的属性-值对,避免反向消除步骤,加快算法的收敛速度,提高规则提取的效率.最后通过仿真实验,证明了改进LEM2算法用于不完备信息系统规则提取的有效性.展开更多
文摘针对LEM2(Learning from Examples Module,Version 2)算法处理不完备信息系统的局限性,从规则提取的质量和效率两个方面对其进行改进,提出改进的LEM2规则提取算法.基于集对理论,引入集对势容差关系和基于集对势容差关系的扩充粗糙集模型,将该模型和LEM2算法相结合,提高规则提取的质量;定义冗余的属性-值对集合,在规则提取过程中,从候选属性-值对集中直接删除冗余的属性-值对,避免反向消除步骤,加快算法的收敛速度,提高规则提取的效率.最后通过仿真实验,证明了改进LEM2算法用于不完备信息系统规则提取的有效性.