Possible less序关系(P序)是一种相对较新的集序关系,在计算机编译器、区间运算以及鲁棒优化等方面均有应用.本文在P序下讨论了参数集优化问题解映射的稳定性.本文给出了P序关系下严格拟凸以及水平集映射的定义,得到了参数集优化问题解...Possible less序关系(P序)是一种相对较新的集序关系,在计算机编译器、区间运算以及鲁棒优化等方面均有应用.本文在P序下讨论了参数集优化问题解映射的稳定性.本文给出了P序关系下严格拟凸以及水平集映射的定义,得到了参数集优化问题解映射上下半连续性的充分条件,并给出了例子加以验证.展开更多
Rough set axiomatization is one aspect of rough set study to characterize rough set theory using dependable and minimal axiom groups. Thus, rough set theory can be studied by logic and axiom system methods. The classi...Rough set axiomatization is one aspect of rough set study to characterize rough set theory using dependable and minimal axiom groups. Thus, rough set theory can be studied by logic and axiom system methods. The classic rough set theory is based on equivalent relation, but rough set theory based on reflexive and transitive relation (called quasi-ordering) has wide applications in the real world. To characterize topological rough set theory, an axiom group named RT, consisting of 4 axioms, is proposed. It is proved that the axiom group reliability in characterizing rough set theory based on similar relation is reasonable. Simultaneously, the minimization of the axiom group, which requires that each axiom is an equation and each is independent, is proved. The axiom group is helpful for researching rough set theory by logic and axiom system methods.展开更多
The concepts of hypercontinuous posets and generalized completely continuous posets are introduced. It is proved that for a poset P the following three conditions are equivalent:(1) P is hypercontinuous;(2) the dual o...The concepts of hypercontinuous posets and generalized completely continuous posets are introduced. It is proved that for a poset P the following three conditions are equivalent:(1) P is hypercontinuous;(2) the dual of P is generalized completely continuous;(3) the normal completion of P is a hypercontinuous lattice. In addition, the relational representation and the intrinsic characterization of hypercontinuous posets are obtained.展开更多
文摘Rough set axiomatization is one aspect of rough set study to characterize rough set theory using dependable and minimal axiom groups. Thus, rough set theory can be studied by logic and axiom system methods. The classic rough set theory is based on equivalent relation, but rough set theory based on reflexive and transitive relation (called quasi-ordering) has wide applications in the real world. To characterize topological rough set theory, an axiom group named RT, consisting of 4 axioms, is proposed. It is proved that the axiom group reliability in characterizing rough set theory based on similar relation is reasonable. Simultaneously, the minimization of the axiom group, which requires that each axiom is an equation and each is independent, is proved. The axiom group is helpful for researching rough set theory by logic and axiom system methods.
基金supported by the National Natural Science Foundation of China(Nos.10861007,11161023)the National Excellent Doctoral Dissertation of China(No.2007B14)+1 种基金the Ganpo 555 Programme for Leading Talents of Jiangxi Province,the Natural Science Foundation of Jiangxi Province(No.20114BAB201008)the Fund of Education Department of Jiangxi Province(No.GJJ12657)
文摘The concepts of hypercontinuous posets and generalized completely continuous posets are introduced. It is proved that for a poset P the following three conditions are equivalent:(1) P is hypercontinuous;(2) the dual of P is generalized completely continuous;(3) the normal completion of P is a hypercontinuous lattice. In addition, the relational representation and the intrinsic characterization of hypercontinuous posets are obtained.