A four-stage monolithic microwave integrated circuits (MMIC) low noise amplifier (LNA) operating from 23 to 36GHz is reported using commercially available 0.15μm PHEMT technology. The LNA is self-biased. To achie...A four-stage monolithic microwave integrated circuits (MMIC) low noise amplifier (LNA) operating from 23 to 36GHz is reported using commercially available 0.15μm PHEMT technology. The LNA is self-biased. To achieve a low noise characteristic, careful optimizations of gate width are performed to reduce gate resistance. Absorption circuits and an elaborate bias structure with a resistor-capacitor network are employed to improve stability. Multiple resonance points and negative feedback technologies are used to widen the bandwidth. Measurements show a noise figure (NF) of less than 2.0dB,and the lowest NF is only 1.6dB at a frequency of 31GHz. In the whole operation band,the LNA has a gain of higher than 26dB,and an input return loss and output return loss of more than 11 and 13dB,respectively. The output power at ldB compression gain of 36GHz is about 14dBm. The chip area is 2.4mm ×1mm.展开更多
A new type strongly gain coupled (GC) DFB laser and a new type self alignment spot size converter (SA SSC) are proposed and successfully fabricated.The strongly GC DFB laser is monolithically integrated with the ...A new type strongly gain coupled (GC) DFB laser and a new type self alignment spot size converter (SA SSC) are proposed and successfully fabricated.The strongly GC DFB laser is monolithically integrated with the SA SSC with three step epitaxies.A high single mode yield and large side mode suppression ratio is obtained from the strongly GC DFB laser.A near circle far field pattern is obtained by using the SA SSC.展开更多
A novel fabrication process related to a smoothly wet chemical etching profile o f InP-based epitaxial layers in the crystal direction of [01for an InP-based monol ithic vertically integrated transmitter with an M...A novel fabrication process related to a smoothly wet chemical etching profile o f InP-based epitaxial layers in the crystal direction of [01for an InP-based monol ithic vertically integrated transmitter with an MQW laser diode and a heterojunction bipolar tran sistors driver circuit is described.A clear eye output diagram via an O/E converter is demonstrat ed und er a 1.25Gb/s non-return-zero pseudorandom code with a pattern length of 2 the integrated transmitter has a power dissipation of about 120mW with an optical output of 2dBm.展开更多
A monolithic voltage controlled oscillator (VCO) based on negative resistance principle is presented uti-lizing commercially available InGaP/GaAs hetero-junction bipolar transistor (HBT) technology. This VCO is de...A monolithic voltage controlled oscillator (VCO) based on negative resistance principle is presented uti-lizing commercially available InGaP/GaAs hetero-junction bipolar transistor (HBT) technology. This VCO is de-signed for 5GHz-band wireless applications. Except for bypass and decoupled capacitors,no external component is needed for real application. Its measured output frequency range is from 4.17 to 4.56GHz,which is very close to the simulation one. And the phase noise at an offset frequency of 1MHz is -112dBc/Hz. The VCO core dissipates 15.5mW from a 3.3V supply,and the output power ranges from 0 to 2dBm. To compare with other oscillators,the figure of merit is calculated,which is about -173.2dBc/Hz. Meanwhile, the principle and design method of nega-tive resistance oscillator are also discussed.展开更多
Millimeter wave transistor technology is very important for MMIC design and fabrication.An InP HEMT with saw toothed source and drain is described.The pattern distortion due to the proximity effect of lithography is ...Millimeter wave transistor technology is very important for MMIC design and fabrication.An InP HEMT with saw toothed source and drain is described.The pattern distortion due to the proximity effect of lithography is a voided.High yield InP HEMT with good DC and RF performances is obtained. The device transconductance is 1050mS/mm,threshold voltage is -1 0V,and current gain cut off frequency is 120GHz.展开更多
A compact Ka-band monolithic microwave integrated circuit(MMIC) voltage controlled oscillator (VCO) with wide tuning range and high output power,which is based on GaAs PHEMT process,is presented.A method is introduced...A compact Ka-band monolithic microwave integrated circuit(MMIC) voltage controlled oscillator (VCO) with wide tuning range and high output power,which is based on GaAs PHEMT process,is presented.A method is introduced to reduce the chip size and to increase the bandwidth of operation.The procedure to design a MMIC VCO is also described here.The measured oscillating frequency of the MMIC VCO is 36±1.2GHz and the output power is 10±1dBm.The fabricated MMIC chip size is 1.3mm×1.0mm.展开更多
An integrated 3.3V/1.2V SC DC-DC converter operating under 10MHz with a fixed duty radio of 0.5 is presented.To improve the output current of the converter,CMOS technology is adopted to fabricate the switching devices...An integrated 3.3V/1.2V SC DC-DC converter operating under 10MHz with a fixed duty radio of 0.5 is presented.To improve the output current of the converter,CMOS technology is adopted to fabricate the switching devices,and mutually compensatory circuitry technology is also employed to double the output current furthermore.The simulation results using Hspice simulation software,show that the output currents of a single unit circuit and two unit circuits connected in a mutually compensatory manner of the improved converter is about 12.5mA and 26mA,respectively.The power conversion efficiency of the mutually compensatory circuit can amount to 73%,while its output voltage ripple is less than 1.5%.The converter is fabricated in standard Rohm 0.35μm CMOS technology in Tokyo University of Japan.The test result indicates that the output current of 9.8mA can be obtained from a single unit circuit of the improved converter.展开更多
A monolithically integrated optoelectronic receiver is presented. A silicon-based photo-diode and receiver circuits are integrated on identical substrates in order to eliminate the parasitics induced by hybrid packagi...A monolithically integrated optoelectronic receiver is presented. A silicon-based photo-diode and receiver circuits are integrated on identical substrates in order to eliminate the parasitics induced by hybrid packaging. Implemented in the present deep sub-micron MS/RF (mixed signal, radio frequency) CMOS,this monolithically OEIC takes advantage of several new features to improve the performance of the photo-diode and eventually the whole OEIC.展开更多
An optimized design of the monolithic switched capacitor DC-DC converter is presented.The general topologic circuit and its basic operating principles are discussed theoretically.Circuit equivalent resistance regulati...An optimized design of the monolithic switched capacitor DC-DC converter is presented.The general topologic circuit and its basic operating principles are discussed theoretically.Circuit equivalent resistance regulation method is proposed as a feasible method to design the on-chip converters.N-channel MOSFETs,instead of Schottky diodes,are used as the diodes in the converters because of their processing compatibility in monolithic fabrication.One more manufacture step,however,is expected to adjust the threshold voltage of the MOSFETs for improving output characteristics of the converters.As an example,a step-up switched-capacitor converter is fabricated in a 2μm p-well double-poly single-metal CMOS technology with breakdown voltage of 15V.Test results indicate that a single sampling cell with 0.4mm 2 of die size can deliver energy up to 0.63mW at 5V output under the condition of 3V input.Efficiency of the tested sample is 68% at 9.8MHz switching frequency...展开更多
A two-stage monolithic low noise amplifier is developed for satellite communication applications,using a 0.5μm enhancement PHEMT technology. The on-chip matched amplifier employs lumped elements to reduce the circuit...A two-stage monolithic low noise amplifier is developed for satellite communication applications,using a 0.5μm enhancement PHEMT technology. The on-chip matched amplifier employs lumped elements to reduce the circuit size, and shows a 5012 noise figure less than 0.9dB, gain greater than 26dB, and return loss less than - 10dB in the S-C band range of 3.5 to 4. 3GHz. The noise figure obtained here is the best result ever reported to date of an MMIC LNA with a gain of more than 20dB for the S-C band frequency range. It is attributed to the low noise performance of the enhancement PHEMT transistor and minimized parasitic resistance of the input match network by a common series source inductor and a unique divided resistance at the drain.展开更多
A three-stage MMIC power amplifier operating from 6to 18GHz is fabricated using 0.25μm A1GaAs/InGaAs/GaAs pseudomorphic high electron mobility transistor(PHEMT).The amplifier isfully monolithic,with all matching,bi...A three-stage MMIC power amplifier operating from 6to 18GHz is fabricated using 0.25μm A1GaAs/InGaAs/GaAs pseudomorphic high electron mobility transistor(PHEMT).The amplifier isfully monolithic,with all matching,biasing,and DC block circuitry included on the chip.Thepower amplifier has an average power gain of 19dB over 6~18GHz.At operation frequenciesfrom 6 to 18GHz,the output power is above 33.3dBm,and the maximum output power of the MMICis 34.7dBm at 10Ghz.The input return loss is less than-10db and the out-put return is lessthan-6dB over operating frequency.This power amplifier has,to our knowledge,the best powergain flatness reported at C-X-Ku-band applications.展开更多
A broadband amplifier with transadmittance and transimpedance stages is designed and two types of improved AGC amplifiers are developed on the base of theory study. Making use of the basic amplifier cells, a main ampl...A broadband amplifier with transadmittance and transimpedance stages is designed and two types of improved AGC amplifiers are developed on the base of theory study. Making use of the basic amplifier cells, a main amplifier IC for optical-fiber receivers is deliberated. By computer simulating the performances of the designed main amplifier meet the necessity of high gain and wide dynamic range . They are maximum voltage gain of 42 dB, the bandwidth of 730 MHz,the input signal( V p-p )range from 5 mV to 1 V,the output amplitude about 1 V, the dynamic range of 46 dB. The designed circuit containing no inductance and large capacitance will be convenient for realizing integration. A monolithic integrated design of 622 Mb/s main amplifier is completed.展开更多
A monolithic clock-recovery circuit used in 622 Mb/s optical communication system is designed,which is based on the phase-locked loop theory,and uses bipolar transistor model.It overcomes the shortcoming of clock reco...A monolithic clock-recovery circuit used in 622 Mb/s optical communication system is designed,which is based on the phase-locked loop theory,and uses bipolar transistor model.It overcomes the shortcoming of clock recovery method based on filter,and implements monolithic clock-recovery IC.The designed circuits include phase detector,voltage-controlled oscillator and loop filter.Among them,the voltage-control oscillator is a modified two-stage ring oscillator,which provides quadrature clock signals and presents wide voltage-controlled range and high voltage-controlling sensitivity.展开更多
The boost type power supplies are widely used in portable consumer electronics to step up the input voltage to adapt for the high voltage applications like light-emitting diode(LED) driving and liquid crystal display(...The boost type power supplies are widely used in portable consumer electronics to step up the input voltage to adapt for the high voltage applications like light-emitting diode(LED) driving and liquid crystal display(LCD) biasing.In these applications,a regulator with small volume,fewer external components and high efficiency is highly desired.This paper proposes a projected off-and on-time boost control scheme,based on which a monolithic IC with an on-chip VDMOS with 0.2 Ω on-state resistance RDS-ON was implemented in 1.5 μm bipolar-CMOS-DMOS(BCD) process.A 12 V,0.3 A boost regulator prototype is presented as well.With projected off-time and modulated on-time in continuous conduction mode(CCM),a quasi fixed frequency,which is preferred for ripple control,is realized.With projected on-time and modulated off-time in discontinuous conduction mode(DCM),pulse frequency modulation(PFM) operation,which is beneficial to light load efficiency improvement,is achieved without extra control circuitry.Measurement results show that an efficiency of 3% higher than that of a conventional method under 0.5 W output is achieved while a step load transient response comparable to that of current mode control is maintained as well.展开更多
文摘A four-stage monolithic microwave integrated circuits (MMIC) low noise amplifier (LNA) operating from 23 to 36GHz is reported using commercially available 0.15μm PHEMT technology. The LNA is self-biased. To achieve a low noise characteristic, careful optimizations of gate width are performed to reduce gate resistance. Absorption circuits and an elaborate bias structure with a resistor-capacitor network are employed to improve stability. Multiple resonance points and negative feedback technologies are used to widen the bandwidth. Measurements show a noise figure (NF) of less than 2.0dB,and the lowest NF is only 1.6dB at a frequency of 31GHz. In the whole operation band,the LNA has a gain of higher than 26dB,and an input return loss and output return loss of more than 11 and 13dB,respectively. The output power at ldB compression gain of 36GHz is about 14dBm. The chip area is 2.4mm ×1mm.
文摘A new type strongly gain coupled (GC) DFB laser and a new type self alignment spot size converter (SA SSC) are proposed and successfully fabricated.The strongly GC DFB laser is monolithically integrated with the SA SSC with three step epitaxies.A high single mode yield and large side mode suppression ratio is obtained from the strongly GC DFB laser.A near circle far field pattern is obtained by using the SA SSC.
文摘A novel fabrication process related to a smoothly wet chemical etching profile o f InP-based epitaxial layers in the crystal direction of [01for an InP-based monol ithic vertically integrated transmitter with an MQW laser diode and a heterojunction bipolar tran sistors driver circuit is described.A clear eye output diagram via an O/E converter is demonstrat ed und er a 1.25Gb/s non-return-zero pseudorandom code with a pattern length of 2 the integrated transmitter has a power dissipation of about 120mW with an optical output of 2dBm.
文摘A monolithic voltage controlled oscillator (VCO) based on negative resistance principle is presented uti-lizing commercially available InGaP/GaAs hetero-junction bipolar transistor (HBT) technology. This VCO is de-signed for 5GHz-band wireless applications. Except for bypass and decoupled capacitors,no external component is needed for real application. Its measured output frequency range is from 4.17 to 4.56GHz,which is very close to the simulation one. And the phase noise at an offset frequency of 1MHz is -112dBc/Hz. The VCO core dissipates 15.5mW from a 3.3V supply,and the output power ranges from 0 to 2dBm. To compare with other oscillators,the figure of merit is calculated,which is about -173.2dBc/Hz. Meanwhile, the principle and design method of nega-tive resistance oscillator are also discussed.
文摘Millimeter wave transistor technology is very important for MMIC design and fabrication.An InP HEMT with saw toothed source and drain is described.The pattern distortion due to the proximity effect of lithography is a voided.High yield InP HEMT with good DC and RF performances is obtained. The device transconductance is 1050mS/mm,threshold voltage is -1 0V,and current gain cut off frequency is 120GHz.
文摘A compact Ka-band monolithic microwave integrated circuit(MMIC) voltage controlled oscillator (VCO) with wide tuning range and high output power,which is based on GaAs PHEMT process,is presented.A method is introduced to reduce the chip size and to increase the bandwidth of operation.The procedure to design a MMIC VCO is also described here.The measured oscillating frequency of the MMIC VCO is 36±1.2GHz and the output power is 10±1dBm.The fabricated MMIC chip size is 1.3mm×1.0mm.
文摘An integrated 3.3V/1.2V SC DC-DC converter operating under 10MHz with a fixed duty radio of 0.5 is presented.To improve the output current of the converter,CMOS technology is adopted to fabricate the switching devices,and mutually compensatory circuitry technology is also employed to double the output current furthermore.The simulation results using Hspice simulation software,show that the output currents of a single unit circuit and two unit circuits connected in a mutually compensatory manner of the improved converter is about 12.5mA and 26mA,respectively.The power conversion efficiency of the mutually compensatory circuit can amount to 73%,while its output voltage ripple is less than 1.5%.The converter is fabricated in standard Rohm 0.35μm CMOS technology in Tokyo University of Japan.The test result indicates that the output current of 9.8mA can be obtained from a single unit circuit of the improved converter.
文摘A monolithically integrated optoelectronic receiver is presented. A silicon-based photo-diode and receiver circuits are integrated on identical substrates in order to eliminate the parasitics induced by hybrid packaging. Implemented in the present deep sub-micron MS/RF (mixed signal, radio frequency) CMOS,this monolithically OEIC takes advantage of several new features to improve the performance of the photo-diode and eventually the whole OEIC.
文摘An optimized design of the monolithic switched capacitor DC-DC converter is presented.The general topologic circuit and its basic operating principles are discussed theoretically.Circuit equivalent resistance regulation method is proposed as a feasible method to design the on-chip converters.N-channel MOSFETs,instead of Schottky diodes,are used as the diodes in the converters because of their processing compatibility in monolithic fabrication.One more manufacture step,however,is expected to adjust the threshold voltage of the MOSFETs for improving output characteristics of the converters.As an example,a step-up switched-capacitor converter is fabricated in a 2μm p-well double-poly single-metal CMOS technology with breakdown voltage of 15V.Test results indicate that a single sampling cell with 0.4mm 2 of die size can deliver energy up to 0.63mW at 5V output under the condition of 3V input.Efficiency of the tested sample is 68% at 9.8MHz switching frequency...
文摘A two-stage monolithic low noise amplifier is developed for satellite communication applications,using a 0.5μm enhancement PHEMT technology. The on-chip matched amplifier employs lumped elements to reduce the circuit size, and shows a 5012 noise figure less than 0.9dB, gain greater than 26dB, and return loss less than - 10dB in the S-C band range of 3.5 to 4. 3GHz. The noise figure obtained here is the best result ever reported to date of an MMIC LNA with a gain of more than 20dB for the S-C band frequency range. It is attributed to the low noise performance of the enhancement PHEMT transistor and minimized parasitic resistance of the input match network by a common series source inductor and a unique divided resistance at the drain.
文摘A three-stage MMIC power amplifier operating from 6to 18GHz is fabricated using 0.25μm A1GaAs/InGaAs/GaAs pseudomorphic high electron mobility transistor(PHEMT).The amplifier isfully monolithic,with all matching,biasing,and DC block circuitry included on the chip.Thepower amplifier has an average power gain of 19dB over 6~18GHz.At operation frequenciesfrom 6 to 18GHz,the output power is above 33.3dBm,and the maximum output power of the MMICis 34.7dBm at 10Ghz.The input return loss is less than-10db and the out-put return is lessthan-6dB over operating frequency.This power amplifier has,to our knowledge,the best powergain flatness reported at C-X-Ku-band applications.
文摘A broadband amplifier with transadmittance and transimpedance stages is designed and two types of improved AGC amplifiers are developed on the base of theory study. Making use of the basic amplifier cells, a main amplifier IC for optical-fiber receivers is deliberated. By computer simulating the performances of the designed main amplifier meet the necessity of high gain and wide dynamic range . They are maximum voltage gain of 42 dB, the bandwidth of 730 MHz,the input signal( V p-p )range from 5 mV to 1 V,the output amplitude about 1 V, the dynamic range of 46 dB. The designed circuit containing no inductance and large capacitance will be convenient for realizing integration. A monolithic integrated design of 622 Mb/s main amplifier is completed.
文摘A monolithic clock-recovery circuit used in 622 Mb/s optical communication system is designed,which is based on the phase-locked loop theory,and uses bipolar transistor model.It overcomes the shortcoming of clock recovery method based on filter,and implements monolithic clock-recovery IC.The designed circuits include phase detector,voltage-controlled oscillator and loop filter.Among them,the voltage-control oscillator is a modified two-stage ring oscillator,which provides quadrature clock signals and presents wide voltage-controlled range and high voltage-controlling sensitivity.
基金Project (No.90707002) supported by the National Natural Science Foundation of China
文摘The boost type power supplies are widely used in portable consumer electronics to step up the input voltage to adapt for the high voltage applications like light-emitting diode(LED) driving and liquid crystal display(LCD) biasing.In these applications,a regulator with small volume,fewer external components and high efficiency is highly desired.This paper proposes a projected off-and on-time boost control scheme,based on which a monolithic IC with an on-chip VDMOS with 0.2 Ω on-state resistance RDS-ON was implemented in 1.5 μm bipolar-CMOS-DMOS(BCD) process.A 12 V,0.3 A boost regulator prototype is presented as well.With projected off-time and modulated on-time in continuous conduction mode(CCM),a quasi fixed frequency,which is preferred for ripple control,is realized.With projected on-time and modulated off-time in discontinuous conduction mode(DCM),pulse frequency modulation(PFM) operation,which is beneficial to light load efficiency improvement,is achieved without extra control circuitry.Measurement results show that an efficiency of 3% higher than that of a conventional method under 0.5 W output is achieved while a step load transient response comparable to that of current mode control is maintained as well.