期刊文献+
共找到139篇文章
< 1 2 7 >
每页显示 20 50 100
改进集成噪声重构经验模式分解的微弱时频特征增强方法及应用 被引量:8
1
作者 袁静 訾艳阳 +2 位作者 倪修华 李文杰 周郁 《机械工程学报》 EI CAS CSCD 北大核心 2016年第19期88-94,共7页
基于噪声利用机制,集成噪声重构经验模式分解方法(Ensemble noise-reconstructed empirical mode decomposition,ENEMD)利用原信号中固有噪声分量改善模式混淆现象,并通过固有噪声分量的相互抵消作用实现信号降噪。然而,该方法中关键噪... 基于噪声利用机制,集成噪声重构经验模式分解方法(Ensemble noise-reconstructed empirical mode decomposition,ENEMD)利用原信号中固有噪声分量改善模式混淆现象,并通过固有噪声分量的相互抵消作用实现信号降噪。然而,该方法中关键噪声估计技术采用类硬阈值处理方式,忽略系数之间相关性。为此,研究基于相邻系数降噪原理的ENEMD噪声估计技术,提高固有噪声分量估计的准确性。在此基础上,将改进ENEMD方法引入Hilbert-Huang变换中,提出改进ENEMD的微弱时频特征增强方法。该方法以无模式混淆的本征模式分量(Intrinsic mode function,IMF)准确表征微弱故障信号的瞬时频率,并以降噪IMF有效提高时频谱信噪比,消除时频谱中噪声杂点,显著提高信号时频表示的分辨率,增强微弱故障的时频表征并突显局部故障征兆,为机械早期和微弱故障识别提供有效手段。工程实例表明该方法有效揭示空气分离压缩机碰撞与摩擦故障征兆,并成功提取重油催化裂化机组早期微弱碰摩故障特征。 展开更多
关键词 集成噪声重构经验模式分解 HILBERT-HUANG变换 微弱特征增强 故障诊断
下载PDF
一种添加部分自适应噪声的集成经验模态分解方法
2
作者 李昊 陈强 徐一雄 《南京理工大学学报》 CAS CSCD 北大核心 2024年第2期227-234,共8页
为了解决集成经验模态分解(EEMD)及其改进形式中普遍存在的噪声量和计算量需求大的问题,统计分析了白噪声内涵模态函数(IMF)的极值点和能量变化规律,总结出白噪声IMF极值点数随长度和阶数变化的经验公式。发现白噪声的高阶IMF不能有效... 为了解决集成经验模态分解(EEMD)及其改进形式中普遍存在的噪声量和计算量需求大的问题,统计分析了白噪声内涵模态函数(IMF)的极值点和能量变化规律,总结出白噪声IMF极值点数随长度和阶数变化的经验公式。发现白噪声的高阶IMF不能有效调整信号的极值点分布,提出添加部分自适应噪声的集成经验模态分解(EEMDPAN)。相比于自适应噪声完全集成经验模态分解(CEEMDAN),EEMDPAN有2点改进:不使用全部独立的自适应噪声,而使用成对相加为0的互补自适应噪声;不添加全部阶的自适应噪声,而是在中间的某一阶停止,而后使用经典EMD方法。对2个人工信号进行分解,实验证明,EEMDPAN很好地继承了EEMD抑制模态混叠的能力,相比于CEEMDAN,计算量降低至1/3,并且分解结果的低阶成分信号附加噪声更小,高阶成分信号可信度更高。 展开更多
关键词 自适应噪声 集成经验模态分解 噪声 内涵模态函数 互补噪声 附加噪声 信号可信度
下载PDF
基于经验模态分解谱峭度重构峰值定位的电机噪声溯源方法 被引量:1
3
作者 冯爽 许琦 +1 位作者 罗园庆 陈长征 《汽车技术》 CSCD 北大核心 2023年第12期35-39,共5页
针对无刷直流电机噪声溯源问题,提出了一种基于经验模态分解谱峭度重构峰值定位(EMD-KR-FP)的电机噪声溯源方法。首先经理论计算得到径向电磁力、转矩脉动和共振引起的电磁噪声的特征频率,定义特征频率集,并采用经验模态分解(EMD)方法... 针对无刷直流电机噪声溯源问题,提出了一种基于经验模态分解谱峭度重构峰值定位(EMD-KR-FP)的电机噪声溯源方法。首先经理论计算得到径向电磁力、转矩脉动和共振引起的电磁噪声的特征频率,定义特征频率集,并采用经验模态分解(EMD)方法对电机噪声时域信号进行分解;然后根据谱峭度理论筛选本征模态函数(IMF)分量进行信号重构,对重构信号进行傅里叶变换,使用峰值定位算法对频谱上贡献最大的几个峰值进行峰值频率提取并与特征频率集的频率进行对照,确定引起电机电磁噪声的原因。试验结果表明,该方法有效,与传统阶次分析法相比,工作量显著降低。 展开更多
关键词 无刷直流电机 经验模态分解谱峭度重构 噪声溯源
下载PDF
基于互补自适应噪声的集合经验模式分解算法 被引量:16
4
作者 蔡念 黄威威 +2 位作者 谢伟 叶倩 杨志景 《电子与信息学报》 EI CSCD 北大核心 2015年第10期2383-2389,共7页
经验模式分解(EMD)及其改进算法作为实用的信号处理方法至今仍然缺少严格的数学理论。该文尝试从数学理论上分析集合经验模式分解和自适应噪声集合经验模式分解的重构误差,推导了总体残留噪声的计算公式。针对自适应噪声集合经验模式分... 经验模式分解(EMD)及其改进算法作为实用的信号处理方法至今仍然缺少严格的数学理论。该文尝试从数学理论上分析集合经验模式分解和自适应噪声集合经验模式分解的重构误差,推导了总体残留噪声的计算公式。针对自适应噪声集合经验模式分解在每一层固有模态分量上仍然存在残留噪声的问题,在分解过程中添加成对的正负噪声分量,提出一种基于互补自适应噪声的集合经验模式分解算法。实验结果表明,相比于集合经验模式分解和自适应噪声集合经验模式分解,所提的方法能够明显地减少每一层固有模态分量中残留的噪声,拥有较好的信号重构精度和更快的分解速度。 展开更多
关键词 经验模式分解 集合经验模式分解 自适应噪声集合经验模式分解 模态混叠
下载PDF
应用经验模态分解的拖船噪声信号重构及抵消方法 被引量:6
5
作者 范文涛 章新华 +3 位作者 夏志军 康春玉 董明 蒋飚 《声学学报》 EI CSCD 北大核心 2012年第6期574-582,共9页
针对拖船干扰的时空特点,提出了将EMD(Empirical Mode Decomposition)应用于拖船噪声信号重构及抵消的方法。为了解决以往需要人工干预挑选EMD输出的多路IMF分量的缺点,提出了将多路IMF(Intrinsic Mode Function)分量与基元域信号按照... 针对拖船干扰的时空特点,提出了将EMD(Empirical Mode Decomposition)应用于拖船噪声信号重构及抵消的方法。为了解决以往需要人工干预挑选EMD输出的多路IMF分量的缺点,提出了将多路IMF(Intrinsic Mode Function)分量与基元域信号按照线谱与连续谱分别做功率谱相关并以谱相关系数最大为准则的挑选算法。基于逆波束形成的理论,利用挑选后的IMF分量重构基元域信号,并与原始基元域信号谱减后再进行方位估计。拖曳声呐模拟器数据与实际海试数据验证结果表明,本文算法能够提高弱目标空间增益,尤其是对于靠近干扰盲区的弱目标空间增益提高明显,并且对拖船多途角扩展干扰也具有较好的抵消能力。 展开更多
关键词 信号重构 经验模态分解 拖船 噪声 应用 MODE 时空特点 人工干预
下载PDF
基于总体经验模式分解的地震信号随机噪声消除 被引量:15
6
作者 史恒 李桂林 +2 位作者 王伟 历玉英 高星 《地球物理学进展》 CSCD 北大核心 2011年第1期71-78,共8页
地震资料去噪是地震数据处理非常重要的步骤,现代地震勘探对地震资料信噪比的要求越来越高.总体经验模式分解(ensemble empirical mode decomposition,简写为EEMD)是一种新的时域信号处理方法 ,它是对经验模式分解(empirical mode decom... 地震资料去噪是地震数据处理非常重要的步骤,现代地震勘探对地震资料信噪比的要求越来越高.总体经验模式分解(ensemble empirical mode decomposition,简写为EEMD)是一种新的时域信号处理方法 ,它是对经验模式分解(empirical mode decomposition,简写为EMD)的一种改进.EEMD将目标信号经验地分解为几个被称为本征模态函数(intrinsic mode function,简写为IMF)的子信号,它是一个自适应的带通滤波器组.本文介绍了EMD和EEMD分解的基本原理,提出了一种基于EEMD分解的地震信号随机噪声消除的方法 .本文利用含噪信号EEMD分解后其有效信号和随机噪声在IMF中差异分布的特点,给出一种地震信号随机噪声消除的新方法 . 展开更多
关键词 经验模式分解(EMD) 总体经验模式分解(EEMD) 随机噪声 去噪
下载PDF
自适应噪声均值优选集成经验模态分解及其在滚动轴承故障诊断中的应用 被引量:7
7
作者 童靳于 苏缪涎 +3 位作者 郑近德 潘海洋 潘紫微 包家汉 《电子测量与仪器学报》 CSCD 北大核心 2021年第2期41-49,共9页
为了提高自适应噪声完备经验模态分解(complete ensemble empirical mode decomposition with adaptive noise, CEEMDAN)的分解能力和分解精度,解决CEEMDAN方法中噪声残留等问题,提出了一种改进的CEEMDAN方法——自适应噪声均值优选集... 为了提高自适应噪声完备经验模态分解(complete ensemble empirical mode decomposition with adaptive noise, CEEMDAN)的分解能力和分解精度,解决CEEMDAN方法中噪声残留等问题,提出了一种改进的CEEMDAN方法——自适应噪声均值优选集成经验模态分解(mean-optimized ensemble empirical mode decomposition with adaptive noise, MEEMDAN)。MEEMDAN在迭代筛分过程中引入不同的权重,以正交性指标最小为依据,从不同权重下的分解结果中选取最优模态函数(IMF),确保了每一阶的IMF分量都是整体最优。通过仿真分析验证了MEEMDAN方法在分解能力和分解精度方面优于CEEMDAN方法。同时,将MEEMDAN和最大相关峭度反褶积相结合,并应用于滚动轴承仿真数据和实测数据分析,结果表明,与现有方法相比,所提方法能够更为准确地提取出故障特征频率,且在分解能力和抑制干扰频率方面更具有优越性。 展开更多
关键词 自适应噪声完整集成经验模态分解 经验模态分解 最大相关峭度反褶积 滚动轴承 故障诊断
下载PDF
基于经验模式分解的拖曳式声纳拖船噪声抵消研究 被引量:13
8
作者 张宾 孙长瑜 孙贵青 《应用声学》 CSCD 北大核心 2007年第2期68-73,共6页
拖曳式线列阵声纳的拖船噪声具有多途角扩展等特点,并且是一个非平稳过程,使得对该噪声的消除或抑制是一大难点。经验模式分解是一种用于分析非线性非平稳信号的新方法,该方法自适应地将嵌于数据内部的多个固有模式函数逐一分解开来。... 拖曳式线列阵声纳的拖船噪声具有多途角扩展等特点,并且是一个非平稳过程,使得对该噪声的消除或抑制是一大难点。经验模式分解是一种用于分析非线性非平稳信号的新方法,该方法自适应地将嵌于数据内部的多个固有模式函数逐一分解开来。本文尝试利用经验模式分解方法分离出水听器接收信号中的拖船干扰噪声,从而达到消除干扰的目的。海上试验数据的处理结果充分验证了这种方法的可行性。 展开更多
关键词 拖曳式线列阵声纳 噪声抵消 经验模式分解 固有模式函数
下载PDF
f-x域经验模式分解与多道奇异谱分析相结合去除随机噪声 被引量:15
9
作者 刘婷婷 陈阳康 《石油物探》 EI CSCD 北大核心 2016年第1期67-75,共9页
近年来,经验模式分解法(EMD)因其处理非稳态地震信号的能力和易于实现而备受关注。总结了EMD在地震去噪中的应用情况,提出了一种基于f-x域EMD和多道奇异谱分析(MSSA)相结合的去噪新方法。该方法不同于f-x域EMD分别与f-x域预测滤波、小... 近年来,经验模式分解法(EMD)因其处理非稳态地震信号的能力和易于实现而备受关注。总结了EMD在地震去噪中的应用情况,提出了一种基于f-x域EMD和多道奇异谱分析(MSSA)相结合的去噪新方法。该方法不同于f-x域EMD分别与f-x域预测滤波、小波阈值、曲波变换等相结合的各种去噪方法,它可以得到比f-x域MSSA更高的信噪比并能预测f-x域EMD中损失掉的线性能量。该方法的实现过程为:首先,对地震剖面应用f-x域EMD,保留所有相对水平的同相轴,这样在噪声剖面中留下很少的倾斜信号和随机噪声,然后在差异剖面中应用f-x域MSSA恢复倾斜信号,最后将水平信号和倾斜信号相加得到去噪剖面。理论测试和实际数据的处理结果验证了该方法的优越性。 展开更多
关键词 去除随机噪声 经验模式分解 多道奇异谱分析法 F-X域 恢复倾斜同相轴
下载PDF
基于噪声辅助快速多维经验模式分解的运动想象脑电信号分类方法 被引量:2
10
作者 郑潜 乔丹 +4 位作者 郎恂 谢磊 李东流 王琪冰 苏宏业 《智能科学与技术学报》 2020年第3期240-250,共11页
脑机接口是一项新兴的技术,它可以处理分析采集到的运动想象脑电信号,从而实现对外部辅助设备的控制。针对目前运动想象脑电信号处理方法计算效率低、分类准确率不高等问题,提出了一种新的基于噪声辅助快速多维经验模式分解(NA-FMEMD)... 脑机接口是一项新兴的技术,它可以处理分析采集到的运动想象脑电信号,从而实现对外部辅助设备的控制。针对目前运动想象脑电信号处理方法计算效率低、分类准确率不高等问题,提出了一种新的基于噪声辅助快速多维经验模式分解(NA-FMEMD)的运动想象脑电信号分类方法。该方法首先利用NA-FMEMD得到全部的多维本征模式函数和趋势项;接着,根据平均频率选取特定的信号层,构建出新的多维信号;然后,通过共空间模式提取出脑电信号的特征向量;最后,将特征向量输入支持向量机分类器中进行分类。分别采用仿真数据和BCI Competition IV数据进行测试,并与基于噪声辅助多维经验模式分解(NA-MEMD)的方法进行比较,验证了所提方法的有效性和优势。 展开更多
关键词 脑电信号 运动想象 噪声辅助快速多维经验模式分解 共空间模式
下载PDF
改进的噪声总体集合经验模式分解方法在轴承故障诊断中的应用 被引量:4
11
作者 阮荣刚 李友荣 +1 位作者 易灿灿 肖涵 《机械设计与制造》 北大核心 2019年第1期153-157,共5页
在复杂的流程工业中,机械设备往往处在高速、重载、高温、高辐射的环境中,轴承作为主要的机械零部件起着重要作用。由于轴承故障振动信号的微弱和不平稳的特性,造成故障特征向量提取和故障诊断存在着困难。提出一种改进的CEEMDAN(Improv... 在复杂的流程工业中,机械设备往往处在高速、重载、高温、高辐射的环境中,轴承作为主要的机械零部件起着重要作用。由于轴承故障振动信号的微弱和不平稳的特性,造成故障特征向量提取和故障诊断存在着困难。提出一种改进的CEEMDAN(Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,ICEEMDAN)轴承故障诊断方法。通过对比分析仿真信号和实测信号可以得知:ICEEMDAN方法可以改善信号重构质量,具有良好的自适应性,能够提高故障信号的信噪比,从而可以有效地识别并提取有用的故障特征信息。 展开更多
关键词 自适应噪声总体集合经验模式分解 本征模态函数 故障诊断 特征提取
下载PDF
经验模态分解算法在角位移传感器信号去噪中的应用 被引量:2
12
作者 胡璞 刘利民 《传感技术学报》 CAS CSCD 北大核心 2023年第1期113-117,共5页
当多个角位移传感器工作在多个电平时,线路间的串扰会导致内部噪声,影响传感器信号输入和输出。设计了角位移传感器线间串扰信号的多层分解去噪方法。在计算角位移传感器信号线间的串扰电压后,分别计算电容耦合和电感耦合的总串扰电压... 当多个角位移传感器工作在多个电平时,线路间的串扰会导致内部噪声,影响传感器信号输入和输出。设计了角位移传感器线间串扰信号的多层分解去噪方法。在计算角位移传感器信号线间的串扰电压后,分别计算电容耦合和电感耦合的总串扰电压。利用经验模态分解算法对传感器信号进行逐层分解后,得到一定量的残差项和信号分量(IMF),并将其相加生成新的信号。重复分解计算产生新的信号,然后计算信号分量(IMF)中包含的串扰信号,并根据硬/软阈值消除串扰噪声。仿真结果表明,所设计的方法可以有效地消除角位移传感器线间串扰信号噪声的影响,使传感器采集的角位移测量电路的电压信号更接近无串扰的电压信号,从而保证角位移传感器信号的有效性。 展开更多
关键词 经验模态分解 角位移传感器 噪声干扰 串扰方式 信号重构
下载PDF
基于因散经验模式分解的电力负荷混合预测方法 被引量:13
13
作者 李媛媛 牛东晓 +1 位作者 乞建勋 刘达 《电网技术》 EI CSCD 北大核心 2008年第8期58-62,共5页
针对目前常用负荷分析方法多依赖主观经验,而经典经验模式分解有时出现混频现象的问题,提出了一种基于因散经验模式分解的电力负荷混合预测方法。首先,采用经验模式分解的改进算法——因散经验模式分解将负荷序列分解,这样可以自适应地... 针对目前常用负荷分析方法多依赖主观经验,而经典经验模式分解有时出现混频现象的问题,提出了一种基于因散经验模式分解的电力负荷混合预测方法。首先,采用经验模式分解的改进算法——因散经验模式分解将负荷序列分解,这样可以自适应地将目标序列分解为若干个独立的内在模式,因此能够克服依赖主观经验的缺点。然后,将这些内在模式基于fine-to-coarse重构为高频、低频和趋势3个分量。在对各分量特性进行分析的基础上,分别采用支持向量机、自回归移动平均和线性回归模型对其进行预测。最后,将3个分量的预测结果叠加作为最终的预测值。利用上述方法对某电网进行24点负荷预测,结果表明该方法可以有效地提高负荷预测精度。 展开更多
关键词 因散经验模式分解 电力负荷 预测 内在模式重构
下载PDF
集成经验模态分解与深度学习的用户侧净负荷预测算法 被引量:32
14
作者 刘友波 吴浩 +3 位作者 刘挺坚 杨智宇 刘俊勇 李秋航 《电力系统自动化》 EI CSCD 北大核心 2021年第24期57-64,共8页
随着用户侧分布式能源发电容量增长,配电网净负荷需求预测面临着更大困难。为此,提出一种改进的自适应噪声的完全集成经验模态分解(CEEMDAN)和深度信念网络(DBN)结合的用户侧净负荷预测方法。首先,通过CEEMDAN将原始净负荷数据分解为若... 随着用户侧分布式能源发电容量增长,配电网净负荷需求预测面临着更大困难。为此,提出一种改进的自适应噪声的完全集成经验模态分解(CEEMDAN)和深度信念网络(DBN)结合的用户侧净负荷预测方法。首先,通过CEEMDAN将原始净负荷数据分解为若干个频率、幅值不一的本征模态函数(IMF)。然后,配合机器学习智能算法,使用DBN逐一对各个IMF分量进行特征提取和时序预测。最后,将多个目标预测结果累加得到最终用户侧短期净负荷预测结果。采用某地区实际数据进行算例分析,验证了所提CEEMDAN-DBN独立预测模型与直接预测相比,能够辨识各频率负荷分量特性,提高分布式能源与负荷耦合性增强背景下的负荷预测精度。 展开更多
关键词 净负荷预测 自适应噪声的完全集成经验模态分解 深度信念网络 时序预测
下载PDF
基于混合经验模式分解的水轮机压力脉动分析 被引量:3
15
作者 蒲桂林 周建中 +2 位作者 李超顺 李静 肖剑 《水力发电》 北大核心 2013年第12期57-60,71,共5页
针对水轮机尾水管压力脉动信号的非平稳性以及经验模式分解(EMD)和集成平均经验模式分解(EEMD)的一些重要缺陷,以虚假分量识别和信号重构为基础,提出了一种混合经验模式分解方法。分别以仿真信号和某混流式水轮机尾水管压力脉动信号为例... 针对水轮机尾水管压力脉动信号的非平稳性以及经验模式分解(EMD)和集成平均经验模式分解(EEMD)的一些重要缺陷,以虚假分量识别和信号重构为基础,提出了一种混合经验模式分解方法。分别以仿真信号和某混流式水轮机尾水管压力脉动信号为例,验证了该方法相对于EMD和EEMD的优势。 展开更多
关键词 水轮机 压力脉动 经验模式分解 集成平均经验模式分解 模态混叠 信号分析 特征提取
下载PDF
基于经验模式分解与奇异谱分析的微弱信号提取 被引量:4
16
作者 毛向东 袁惠群 孙华刚 《制造业自动化》 北大核心 2014年第21期61-64,共4页
如果信号的信噪比较小,经验模式分解由于无法对原始信号进行正确分解而失效。为此,提出经验模式分解和奇异谱相结合的微弱信号提取方法。该方法首先采用经验模式分解方法获取若干个固有模式函数,并对包含特征频率成分的固有模式函数进... 如果信号的信噪比较小,经验模式分解由于无法对原始信号进行正确分解而失效。为此,提出经验模式分解和奇异谱相结合的微弱信号提取方法。该方法首先采用经验模式分解方法获取若干个固有模式函数,并对包含特征频率成分的固有模式函数进行重组和相空间重构,而后进行奇异谱分析。最后,利用由奇异谱分析得到的主分量和经验正交函数反重构出一个新的时间序列,并对该时间序列进行频谱分析。仿真和实验分析均表明该方法能够有效的从强噪声干扰中提取出微弱特征信号。 展开更多
关键词 经验模式分解 固有模式函数 奇异谱 重构
下载PDF
基于密度聚类模态分解的卷积神经网络和长短期记忆网络短期风电功率预测
17
作者 崔明勇 董文韬 卢志刚 《现代电力》 北大核心 2024年第4期631-641,共11页
近年来,随着碳达峰和碳中和“双碳”战略目标的提出,风力发电已成为可再生能源发电的关键部分。为提高风电功率短期预测的准确度,提出基于密度聚类与自适应噪声完备集成经验模态分解(complete ensemble empirical mode decomposition wi... 近年来,随着碳达峰和碳中和“双碳”战略目标的提出,风力发电已成为可再生能源发电的关键部分。为提高风电功率短期预测的准确度,提出基于密度聚类与自适应噪声完备集成经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和卷积神经网络与长短期记忆网络结合的短期风电功率预测方法。首先,利用密度聚类将风电功率与天气特征分成不同类别的数据集,通过自适应噪声完备集成经验模态分解算法将不同类别的数据进行频域分解得到子序列分量。以此为基础,将不同的子序列分量与天气特征进行特征选择,输入到卷积神经网络与长短期记忆网络的预测模型。最后,将不同的预测结果进行叠加得到最终的预测结果。整个预测过程通过聚类、分解和特征选择,有效提高了短期风电功率预测的准确度。 展开更多
关键词 风电功率预测 密度聚类 自适应噪声完备集成经验模态分解 卷积神经网络 长短期记忆网络
下载PDF
地基观测红外目标二维经验模式分解检测方法及应用
18
作者 陈略 唐歌实 +2 位作者 王保丰 路伟涛 王欣 《载人航天》 CSCD 北大核心 2018年第2期191-195,共5页
针对复杂条件下的地基观测红外图像目标检测问题,引入二维经验模式分解(BEMD)方法对复杂条件下的目标红外实测图像进行了处理分析:首先对目标观测原始红外图像进行中值滤波,对原始红外图像进行噪声抑制预处理;然后利用BEMD算法对预处理... 针对复杂条件下的地基观测红外图像目标检测问题,引入二维经验模式分解(BEMD)方法对复杂条件下的目标红外实测图像进行了处理分析:首先对目标观测原始红外图像进行中值滤波,对原始红外图像进行噪声抑制预处理;然后利用BEMD算法对预处理后红外图像进行自适应分解,获得按频段分布的二维基本模式分量与残余图像,并对分解后的红外图像进行有效重构,获取处理后的红外目标图像;最后利用点锐度方法定量评估目标红外图像处理效果,并与原始红外图像进行比对分析。基于实测红外图像处理结果表明,BEMD方法有效抑制了云层背景杂波噪声,且有效检测出清晰的红外目标,处理后的红外图像清晰度较原始红外图像显著提高。 展开更多
关键词 二维经验模式分解 航天器 红外图像 噪声抑制 点锐度
下载PDF
基于状态划分和集成学习的轴承剩余使用寿命预测模型
19
作者 胡志辉 王绪光 +2 位作者 王贡献 张腾 李帅琦 《机电工程》 CAS 北大核心 2024年第8期1423-1430,共8页
针对滚动轴承剩余使用寿命(RUL)预测退化起始时间(DST)难以确定,以及单一寿命预测模型精度比较低的问题,提出了一种基于状态划分和集成学习模型的滚动轴承RUL预测方法。首先,提取了轴承振动信号的特征,利用滑动窗口不断更新3σ准则预警... 针对滚动轴承剩余使用寿命(RUL)预测退化起始时间(DST)难以确定,以及单一寿命预测模型精度比较低的问题,提出了一种基于状态划分和集成学习模型的滚动轴承RUL预测方法。首先,提取了轴承振动信号的特征,利用滑动窗口不断更新3σ准则预警范围,结合连续触发机制自适应确定DST;然后,采用具有自适应噪声的完全集成经验模态分解(CEEMDAN)对退化阶段信号序列进行了自适应分解;最后,构建了集成学习模型,考虑分量的不同特性进行了多步滚动预测,融合预测结果得到了轴承RUL,采用滚动轴承XJTU-SY公开数据集进行了试验验证。研究结果表明:与基于长短时记忆神经网络(LSTM)、反向传播神经网络(BPNN)的预测方法相比,该方法预测结果的平均绝对误差分别降低了11.7%以及5.6%,相对均方根误差分别降低了12.2%以及10.7%,验证了该方法在轴承RUL预测中的有效性和优越性。 展开更多
关键词 滚动轴承剩余使用寿命 退化起始时间 自适应DST状态划分 集成学习模型 退化特征提取 具有自适应噪声的完全集成经验模态分解 长短时记忆神经网络
下载PDF
中值互补集合经验模态分解 被引量:1
20
作者 刘淞华 何冰冰 +3 位作者 郎恂 陈启明 张榆锋 苏宏业 《自动化学报》 EI CAS CSCD 北大核心 2023年第12期2544-2556,共13页
针对经验模态分解(Empirical mode decomposition,EMD)系列方法存在的模态分裂(Mode splitting,MS)问题,提出中值互补集合经验模态分解(Median complementary ensemble EMD,MCEEMD)算法.通过概率模型量化互补集合经验模态分解(Complemen... 针对经验模态分解(Empirical mode decomposition,EMD)系列方法存在的模态分裂(Mode splitting,MS)问题,提出中值互补集合经验模态分解(Median complementary ensemble EMD,MCEEMD)算法.通过概率模型量化互补集合经验模态分解(Complementary ensemble EMD,CEEMD)的MS问题,证明了使用中值算子替代算术平均算子对抑制MS的有效性.为了兼具抑制MS和残留噪声的性能,MCEEMD算法首次在集合过程中结合了中值和平均算子.具体地,所提方法首先添加N对互补的白噪声至原信号中,并经过EMD分解得到2N组固有模态函数(Intrinsic mode functions,IMFs),然后分别对其中互补相关的IMFs两两取平均得到N组IMFs,最后使用中值算子处理上述N组IMFs得到输出结果.对仿真信号与两个真实案例的分析结果表明,本文提出的MCEEMD方法不仅有效抑制了CEEMD的MS问题,而且避免了单一使用中值算子的两个缺点:分解完备性差和IMFs中存在的毛刺现象. 展开更多
关键词 模态分裂 中值算子 互补白噪声 互补集合经验模式分解
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部