期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
集成学习法与双分裂Bregman正则化下的图像复原
1
作者 杨敬娴 郭喜庆 +2 位作者 孙鹏飞 韩文钦 解官宝 《微电子学与计算机》 CSCD 北大核心 2013年第12期85-89,96,共6页
相机在拍摄过程中会受到多种模糊降质过程的影响,其中曝光过程中相机的抖动与散焦是极为常见的图像降质原因.针对自然图像梯度满足重尾分布的特性,利用混合高斯模型进行参数建模,并将模型参数作为先验知识,采用一种基于变分贝叶斯估计... 相机在拍摄过程中会受到多种模糊降质过程的影响,其中曝光过程中相机的抖动与散焦是极为常见的图像降质原因.针对自然图像梯度满足重尾分布的特性,利用混合高斯模型进行参数建模,并将模型参数作为先验知识,采用一种基于变分贝叶斯估计的集成学习法来估计降晰核.接着利用总变分正则化方法,提出了一种双分裂Bregman迭代算法,实现了在Bregman框架下的图像反卷积.采用本算法对两幅实际拍摄的模糊照片进行图像复原,并通过与目前的复原算法相比证明该算法能更加有效地去除图像模糊. 展开更多
关键词 图像复原 集成学习法 总变分 Bregman迭代
下载PDF
基于集成核熵成分分析算法的工业过程故障检测
2
作者 郭金玉 赵文君 李元 《河北科技大学学报》 CAS 北大核心 2021年第5期481-490,共10页
针对核熵成分分析算法(kernel entropy component analysis,KECA)为不同的故障选择相同的核参数影响检测效果的问题,提出了一种基于集成核熵成分分析(ensemble kernel entropy component analysis,EKECA)算法的工业过程故障检测方法。首... 针对核熵成分分析算法(kernel entropy component analysis,KECA)为不同的故障选择相同的核参数影响检测效果的问题,提出了一种基于集成核熵成分分析(ensemble kernel entropy component analysis,EKECA)算法的工业过程故障检测方法。首先,选取一系列具有不同宽度参数的核函数将非线性数据投影到核特征空间,选取Rényi熵值贡献较大的特征值和特征向量,得到转换后的得分矩阵,建立多个KECA子模型;然后,将测试数据投影到各KECA子模型上,计算各KECA子模型的统计量,得到检测结果;最后,将各KECA子模型的检测结果利用Bayesian决策进行概率换算,利用集成学习法计算检测结果统一的统计量,判断其是否超出控制限,并将该算法应用于数值例子和TE过程。仿真结果表明,与传统的EKPCA,KECA等算法相比,所提方法有效提高了故障检测率,降低了误报率。新方法解决了传统KECA算法中不同故障核参数的选择问题,为提高KECA算法在非线性工业过程故障检测中的性能提供了参考。 展开更多
关键词 自动控制技术其他学科 核熵成分分析 高斯核函数 Bayesian决策 集成学习法
下载PDF
基于集成核局部保持投影算法的故障检测 被引量:5
3
作者 郭金玉 王鑫 李元 《信息与控制》 CSCD 北大核心 2018年第2期191-199,共9页
针对化工生产过程的非线性,为了解决核局部保持投影算法中核参数的选择问题,寻找适用于多个故障的核参数,提出了一种新的集成核局部保持投影算法(ensemble kernel locality preserving projections,EKLPP).首先选取一系列具有不同参数... 针对化工生产过程的非线性,为了解决核局部保持投影算法中核参数的选择问题,寻找适用于多个故障的核参数,提出了一种新的集成核局部保持投影算法(ensemble kernel locality preserving projections,EKLPP).首先选取一系列具有不同参数的核函数将非线性数据投影到高维空间,提取数据的非线性信息,得到投影矩阵A,建立一系列子KLPP模型;然后计算待检测数据的核矩阵并将其投影到矩阵A上,利用统计量得到各子模型的检测结果;利用贝叶斯决策将检测结果转化成发生故障概率的形式;最后利用集成学习法将检测结果进行组合,与控制限对比进行检测.将该方法应用于TE(Tennessee Eastman)过程,验证该方法可以有效检测非线性故障. 展开更多
关键词 故障诊断 集成核主元分析 集成核局部保持投影 贝叶斯决策 集成学习法
原文传递
Rockburst prediction in hard rock mines developing bagging and boosting tree-based ensemble techniques 被引量:29
4
作者 WANG Shi-ming ZHOU Jian +3 位作者 LI Chuan-qi Danial Jahed ARMAGHANI LI Xi-bing Hani SMITRI 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第2期527-542,共16页
Rockburst prediction is of vital significance to the design and construction of underground hard rock mines.A rockburst database consisting of 102 case histories,i.e.,1998−2011 period data from 14 hard rock mines was ... Rockburst prediction is of vital significance to the design and construction of underground hard rock mines.A rockburst database consisting of 102 case histories,i.e.,1998−2011 period data from 14 hard rock mines was examined for rockburst prediction in burst-prone mines by three tree-based ensemble methods.The dataset was examined with six widely accepted indices which are:the maximum tangential stress around the excavation boundary(MTS),uniaxial compressive strength(UCS)and uniaxial tensile strength(UTS)of the intact rock,stress concentration factor(SCF),rock brittleness index(BI),and strain energy storage index(EEI).Two boosting(AdaBoost.M1,SAMME)and bagging algorithms with classification trees as baseline classifier on ability to learn rockburst were evaluated.The available dataset was randomly divided into training set(2/3 of whole datasets)and testing set(the remaining datasets).Repeated 10-fold cross validation(CV)was applied as the validation method for tuning the hyper-parameters.The margin analysis and the variable relative importance were employed to analyze some characteristics of the ensembles.According to 10-fold CV,the accuracy analysis of rockburst dataset demonstrated that the best prediction method for the potential of rockburst is bagging when compared to AdaBoost.M1,SAMME algorithms and empirical criteria methods. 展开更多
关键词 ROCKBURST hard rock PREDICTION BAGGING BOOSTING ensemble learning
下载PDF
Rotation forest based on multimodal genetic algorithm 被引量:2
5
作者 XU Zhe NI Wei-chen JI Yue-hui 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第6期1747-1764,共18页
In machine learning,randomness is a crucial factor in the success of ensemble learning,and it can be injected into tree-based ensembles by rotating the feature space.However,it is a common practice to rotate the featu... In machine learning,randomness is a crucial factor in the success of ensemble learning,and it can be injected into tree-based ensembles by rotating the feature space.However,it is a common practice to rotate the feature space randomly.Thus,a large number of trees are required to ensure the performance of the ensemble model.This random rotation method is theoretically feasible,but it requires massive computing resources,potentially restricting its applications.A multimodal genetic algorithm based rotation forest(MGARF)algorithm is proposed in this paper to solve this problem.It is a tree-based ensemble learning algorithm for classification,taking advantage of the characteristic of trees to inject randomness by feature rotation.However,this algorithm attempts to select a subset of more diverse and accurate base learners using the multimodal optimization method.The classification accuracy of the proposed MGARF algorithm was evaluated by comparing it with the original random forest and random rotation ensemble methods on 23 UCI classification datasets.Experimental results show that the MGARF method outperforms the other methods,and the number of base learners in MGARF models is much fewer. 展开更多
关键词 ensemble learning decision tree multimodal optimization genetic algorithm
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部