提出了一种基于部分集成局部特征尺度分解(Partly ensemble local characteristic-scale decomposition,PELCD)、拉普拉斯分值(Laplacian score,LS)特征选择和基于变量预测模型模式分类(Variable predictive model based class discrimi...提出了一种基于部分集成局部特征尺度分解(Partly ensemble local characteristic-scale decomposition,PELCD)、拉普拉斯分值(Laplacian score,LS)特征选择和基于变量预测模型模式分类(Variable predictive model based class discrimination,VPMCD)的滚动轴承故障诊断模型。PELCD是新提出的一种基于噪声辅助数据分析方法,克服了局部特征尺度分解的模态混淆问题,与传统的基于噪声辅助数据分析方法相比有一定的优越性,论文将其应用于滚动轴承振动信号的预处理。之后提取振动信号PELCD分量的时域和频域统计特征及振动信号的时频联合域特征;同时为了降低特征向量维数,提高诊断效率,采用LS优化特征向量。再将优化的特征向量输入到VPMCD分类器进行训练和测试。滚动轴承实验数据分析结果表明该模型能够有效地诊断故障程度和故障类型。展开更多
机械振动信号携带大量重要的机械状态信息,然而机械故障振动信号在复杂工作状态下通常呈现非平稳、非线性特性。因此,从振动信号抽取和选择有效的机械故障特征、提高故障识别性能,成为机械故障诊断研究的热点。针对上述问题,本文提出了...机械振动信号携带大量重要的机械状态信息,然而机械故障振动信号在复杂工作状态下通常呈现非平稳、非线性特性。因此,从振动信号抽取和选择有效的机械故障特征、提高故障识别性能,成为机械故障诊断研究的热点。针对上述问题,本文提出了基于集成局部均值分解(Ensemble local means decomposition,ELMD)与改进的稀疏多尺度支持向量机(Sparse multiscale support vector machine,SMSVM)的机械故障诊断方法。该方法首先使用自适应非线性、非平稳信号处理方法 ELMD把多模态调制故障信号分解成为多个单模态解调信号,有效地增强了故障特征。把压缩感知和多尺度分析技术融合于故障模式分类中,提出改进SMSVM旋转机械故障识别方法,提高多类机械微弱故障数据模式识别性能。该方法融合稀疏表示、多尺度分析和SVM的优点,无需求解复杂的优化问题,易于推广至更多尺度SVM,具有计算量少、泛化性与鲁棒性好、物理意义明显等优点。人工数据和实验设备数据验证了本文算法的优越性。展开更多
This paper considers an ant colony optimization algorithm based on AND/OR graph for integrated process planning and scheduling(IPPS). Generally, the process planning and scheduling are studied separately. Due to the c...This paper considers an ant colony optimization algorithm based on AND/OR graph for integrated process planning and scheduling(IPPS). Generally, the process planning and scheduling are studied separately. Due to the complexity of manufacturing system, IPPS combining both process planning and scheduling can depict the real situation of a manufacturing system. The IPPS is represented on AND/OR graph consisting of nodes, and undirected and directed arcs. The nodes denote operations of jobs, and undirected/directed arcs denote possible visiting path among the nodes. Ant colony goes through the necessary nodes on the graph from the starting node to the end node to obtain the optimal solution with the objective of minimizing makespan. In order to avoid local convergence and low convergence, some improved strategy is incorporated in the standard ant colony optimization algorithm. Extensive computational experiments are carried out to study the influence of various parameters on the system performance.展开更多
文摘提出了一种基于部分集成局部特征尺度分解(Partly ensemble local characteristic-scale decomposition,PELCD)、拉普拉斯分值(Laplacian score,LS)特征选择和基于变量预测模型模式分类(Variable predictive model based class discrimination,VPMCD)的滚动轴承故障诊断模型。PELCD是新提出的一种基于噪声辅助数据分析方法,克服了局部特征尺度分解的模态混淆问题,与传统的基于噪声辅助数据分析方法相比有一定的优越性,论文将其应用于滚动轴承振动信号的预处理。之后提取振动信号PELCD分量的时域和频域统计特征及振动信号的时频联合域特征;同时为了降低特征向量维数,提高诊断效率,采用LS优化特征向量。再将优化的特征向量输入到VPMCD分类器进行训练和测试。滚动轴承实验数据分析结果表明该模型能够有效地诊断故障程度和故障类型。
文摘机械振动信号携带大量重要的机械状态信息,然而机械故障振动信号在复杂工作状态下通常呈现非平稳、非线性特性。因此,从振动信号抽取和选择有效的机械故障特征、提高故障识别性能,成为机械故障诊断研究的热点。针对上述问题,本文提出了基于集成局部均值分解(Ensemble local means decomposition,ELMD)与改进的稀疏多尺度支持向量机(Sparse multiscale support vector machine,SMSVM)的机械故障诊断方法。该方法首先使用自适应非线性、非平稳信号处理方法 ELMD把多模态调制故障信号分解成为多个单模态解调信号,有效地增强了故障特征。把压缩感知和多尺度分析技术融合于故障模式分类中,提出改进SMSVM旋转机械故障识别方法,提高多类机械微弱故障数据模式识别性能。该方法融合稀疏表示、多尺度分析和SVM的优点,无需求解复杂的优化问题,易于推广至更多尺度SVM,具有计算量少、泛化性与鲁棒性好、物理意义明显等优点。人工数据和实验设备数据验证了本文算法的优越性。
基金Supported by the Fundamental Research Funds for the Central Universities(13MS100)the Hebei Province Research Foundation of Natural Science(E2011502024)the National Natural Science Foundation of China(51177046)
文摘This paper considers an ant colony optimization algorithm based on AND/OR graph for integrated process planning and scheduling(IPPS). Generally, the process planning and scheduling are studied separately. Due to the complexity of manufacturing system, IPPS combining both process planning and scheduling can depict the real situation of a manufacturing system. The IPPS is represented on AND/OR graph consisting of nodes, and undirected and directed arcs. The nodes denote operations of jobs, and undirected/directed arcs denote possible visiting path among the nodes. Ant colony goes through the necessary nodes on the graph from the starting node to the end node to obtain the optimal solution with the objective of minimizing makespan. In order to avoid local convergence and low convergence, some improved strategy is incorporated in the standard ant colony optimization algorithm. Extensive computational experiments are carried out to study the influence of various parameters on the system performance.