With the device feature's size miniaturization in very large scale integrated circuit and ultralarge scale integrated circuit towards the sub\|micron and beyond level, the next generation of IC device requires s...With the device feature's size miniaturization in very large scale integrated circuit and ultralarge scale integrated circuit towards the sub\|micron and beyond level, the next generation of IC device requires silicon wafers with more improved electrical characteristics and reliability as well as a high perfection of the wafer surface. Compared with the polished wafer with a relatively high density of crystal originated defects (e. g. COPs), silicon epi\|wafers can meet such high requirements. The current development of researches on the 150mm silicon epi\|wafers for advanced IC applications is described. The P/P\++ CMOS silicon epi\|wafers were fabricated on a PE2061 Epitaxial Reactor (made by Italian LPE Company). The material parameters of epi\|wafers, such as epi\|defects, uniformity of thickness and resistivity, transition width, and minority carrier generation lifetime for epi\|layer were characterized in detail. It is demonstrated that the 150mm silicon epi\|wafers on PE2061 can meet the stringent requirements for the advanced IC applications.展开更多
Sustainable forage production is one of the most important factors in livestock production system. Smallholder livestock production system is a part of agricultural practice in Indonesia. Limited land owned by farmers...Sustainable forage production is one of the most important factors in livestock production system. Smallholder livestock production system is a part of agricultural practice in Indonesia. Limited land owned by farmers was dominantly cultivated for food crops, and very small part of it used for cultivating forage plants. This leads to restriction of smallholder livestock development, because no more land available for forage production. Integrated forage production system by planting forage plants and food crops or trees in the same area becomes a considerable cropping system that widely practiced by the farmers in Indonesia. Some grasses and legumes have morphological advantages overcoming growth condition under shading. These growth characteristics are benefit in designing compatible system components for enhanced productivity in tree-pasture systems. Four potential shade-tolerant creeping forages that were combined with 2 levels of nitrogen application were tested using factorial completely randomized design 3 replicates. The first factor was species of creeping forages (stoloniferous): BH = Brachiaria humidicola, PN = Paspalum notatum, AC - Axonopus compressus and, AP = Arachis pintoi. The second factor was nitrogen (urea) fertilizer: A = without N fertilizer and B = with N fertilizer (300 kg Urea/ha). The observations included the growth rates of plant length, plant length, number of leaves, herbages yield (shoot), root dry weight, senescence, total N-shoot, N-soil and N-uptake. The results showed that growth characteristics and productivity of creeping forage plants was significantly differed by the species. Most species showed an increase in growth trend, except P. notatum. A. compressus significantly showed as the best performance species compared to other, in terms of growth rates, plant length, number of leaves, herbage yield (shoot) and root dry weight, N-uptake and N-shoot. This was lbllowed by B. humidicola, P. notatum, and A. pintoi. Based on previous study, A. compressus found as one of the native species in most tree system. It indicated its superior growth compared to other species tested. However, it is needed further research to observe the compatibility of each species in tree-pasture systems.展开更多
Using directional distance function and nonparametric data envelopment analys&, th& paper estimates the environmental total factor productivity (ETFP) of energy-intensive industries in China from 1995 to 2010, and...Using directional distance function and nonparametric data envelopment analys&, th& paper estimates the environmental total factor productivity (ETFP) of energy-intensive industries in China from 1995 to 2010, and performs an empirical analysis on factors affecting ETFP growth after studying the differences of energy-intensive industries ' ETFP by industries and provinces. The findings include the following: energy-intensive industries 'ETFP growth is mainly driven by technical progress; China, at its current development stage, still has the potential to raise the productivity of its energy- intensive industries. By estimating the provincial data, we find that the ETFP growth of different provinces converge at different levels. Further market liberalization, increased FDl flows and reductions in energy intensity will help to improve each province's ETFP growth. In addition, increasing investment in energy saving and emissions reduction and improving corporate environmental management capacity can help to reduce a company's short-term cost of complying with environmental regulations.展开更多
基金Project Supported by National Ninth5-year Plan of China.
文摘With the device feature's size miniaturization in very large scale integrated circuit and ultralarge scale integrated circuit towards the sub\|micron and beyond level, the next generation of IC device requires silicon wafers with more improved electrical characteristics and reliability as well as a high perfection of the wafer surface. Compared with the polished wafer with a relatively high density of crystal originated defects (e. g. COPs), silicon epi\|wafers can meet such high requirements. The current development of researches on the 150mm silicon epi\|wafers for advanced IC applications is described. The P/P\++ CMOS silicon epi\|wafers were fabricated on a PE2061 Epitaxial Reactor (made by Italian LPE Company). The material parameters of epi\|wafers, such as epi\|defects, uniformity of thickness and resistivity, transition width, and minority carrier generation lifetime for epi\|layer were characterized in detail. It is demonstrated that the 150mm silicon epi\|wafers on PE2061 can meet the stringent requirements for the advanced IC applications.
文摘Sustainable forage production is one of the most important factors in livestock production system. Smallholder livestock production system is a part of agricultural practice in Indonesia. Limited land owned by farmers was dominantly cultivated for food crops, and very small part of it used for cultivating forage plants. This leads to restriction of smallholder livestock development, because no more land available for forage production. Integrated forage production system by planting forage plants and food crops or trees in the same area becomes a considerable cropping system that widely practiced by the farmers in Indonesia. Some grasses and legumes have morphological advantages overcoming growth condition under shading. These growth characteristics are benefit in designing compatible system components for enhanced productivity in tree-pasture systems. Four potential shade-tolerant creeping forages that were combined with 2 levels of nitrogen application were tested using factorial completely randomized design 3 replicates. The first factor was species of creeping forages (stoloniferous): BH = Brachiaria humidicola, PN = Paspalum notatum, AC - Axonopus compressus and, AP = Arachis pintoi. The second factor was nitrogen (urea) fertilizer: A = without N fertilizer and B = with N fertilizer (300 kg Urea/ha). The observations included the growth rates of plant length, plant length, number of leaves, herbages yield (shoot), root dry weight, senescence, total N-shoot, N-soil and N-uptake. The results showed that growth characteristics and productivity of creeping forage plants was significantly differed by the species. Most species showed an increase in growth trend, except P. notatum. A. compressus significantly showed as the best performance species compared to other, in terms of growth rates, plant length, number of leaves, herbage yield (shoot) and root dry weight, N-uptake and N-shoot. This was lbllowed by B. humidicola, P. notatum, and A. pintoi. Based on previous study, A. compressus found as one of the native species in most tree system. It indicated its superior growth compared to other species tested. However, it is needed further research to observe the compatibility of each species in tree-pasture systems.
文摘Using directional distance function and nonparametric data envelopment analys&, th& paper estimates the environmental total factor productivity (ETFP) of energy-intensive industries in China from 1995 to 2010, and performs an empirical analysis on factors affecting ETFP growth after studying the differences of energy-intensive industries ' ETFP by industries and provinces. The findings include the following: energy-intensive industries 'ETFP growth is mainly driven by technical progress; China, at its current development stage, still has the potential to raise the productivity of its energy- intensive industries. By estimating the provincial data, we find that the ETFP growth of different provinces converge at different levels. Further market liberalization, increased FDl flows and reductions in energy intensity will help to improve each province's ETFP growth. In addition, increasing investment in energy saving and emissions reduction and improving corporate environmental management capacity can help to reduce a company's short-term cost of complying with environmental regulations.