A new self-powered active gas sensor for realtime monitoring of automotive exhaust gas was devised.The pipe-shaped device was fabricated from polydimethylsiloxane/polypyrrole(PDMS/Ppy)triboelectric gas-sensing unit ar...A new self-powered active gas sensor for realtime monitoring of automotive exhaust gas was devised.The pipe-shaped device was fabricated from polydimethylsiloxane/polypyrrole(PDMS/Ppy)triboelectric gas-sensing unit arrays.The gas-sensing units can actively convert the mechanical energy of gas flow into a triboelectric current.The output current signal depends on the species and concentrations of the target chemical gases(CO,NH3,NO)in the gas flow,and thus can be used as a sensing signal.The device consists of seven gas-sensing units with different Ppy derivatives.As the different sensing units respond to the gases in different ways,the device can differentiate between gas species.The working mechanism is attributed to the coupling effect between the triboelectric effect of PDMS/Ppy and the gas-sensing properties of Ppy.The device can be installed in the tailpipe of an automobile,and can thus analyze the exhaust gas in real time without the need for any external electrical power.The results of the present study spur a new research direction for the development of automotive exhaust gas monitoring systems,thus playing an important role in the detection of air pollution.展开更多
A sequential injection analysis (SIA) system based on polydimethylsiloxane (PDMS) chip with integrated pneumatic-actuated valves was developed. A novel SIA operation mode using multiphase laminar flow effect and pneum...A sequential injection analysis (SIA) system based on polydimethylsiloxane (PDMS) chip with integrated pneumatic-actuated valves was developed. A novel SIA operation mode using multiphase laminar flow effect and pneumatic microvalve control was proposed. The sample and reagent solutions were synchronously loaded and injected in the chip-based sample injection module instead of multi-step sequential injection by a multiposition valve and a reciprocating pump as in conventional SIA system. The sample and reagent injection volumes were reduced to ca. 1.1 nL. The present system has the advantages of simple structure, fast and convenient operation, low sample and reagent consumption, and high degree of integration and automation. The system operation conditions were optimized using fluorescein as model sample. Its feasibility in biological analysis was preliminarily demonstrated in enzyme inhibition assay.展开更多
基金supported by the National Natural Science Foundation of China (11674048)the Fundamental Research Funds for the Central Universities (N170505001 and N160502002)the Program for Shenyang Youth Science and Technology Innovation Talents (RC170269)
文摘A new self-powered active gas sensor for realtime monitoring of automotive exhaust gas was devised.The pipe-shaped device was fabricated from polydimethylsiloxane/polypyrrole(PDMS/Ppy)triboelectric gas-sensing unit arrays.The gas-sensing units can actively convert the mechanical energy of gas flow into a triboelectric current.The output current signal depends on the species and concentrations of the target chemical gases(CO,NH3,NO)in the gas flow,and thus can be used as a sensing signal.The device consists of seven gas-sensing units with different Ppy derivatives.As the different sensing units respond to the gases in different ways,the device can differentiate between gas species.The working mechanism is attributed to the coupling effect between the triboelectric effect of PDMS/Ppy and the gas-sensing properties of Ppy.The device can be installed in the tailpipe of an automobile,and can thus analyze the exhaust gas in real time without the need for any external electrical power.The results of the present study spur a new research direction for the development of automotive exhaust gas monitoring systems,thus playing an important role in the detection of air pollution.
基金supported by the National Natural Science Foundation of China (20825517, 20890020)Ministry of Science and Technology of China (2007CB714503)
文摘A sequential injection analysis (SIA) system based on polydimethylsiloxane (PDMS) chip with integrated pneumatic-actuated valves was developed. A novel SIA operation mode using multiphase laminar flow effect and pneumatic microvalve control was proposed. The sample and reagent solutions were synchronously loaded and injected in the chip-based sample injection module instead of multi-step sequential injection by a multiposition valve and a reciprocating pump as in conventional SIA system. The sample and reagent injection volumes were reduced to ca. 1.1 nL. The present system has the advantages of simple structure, fast and convenient operation, low sample and reagent consumption, and high degree of integration and automation. The system operation conditions were optimized using fluorescein as model sample. Its feasibility in biological analysis was preliminarily demonstrated in enzyme inhibition assay.