s:A divide- by- 12 8/ 12 9or6 4/ 6 5 dual- modulus prescaler based on new optimized structure and dynam ic circuit technique im plem ented in 0 .2 5 μm CMOS digital technology is described.New optimized structure re...s:A divide- by- 12 8/ 12 9or6 4/ 6 5 dual- modulus prescaler based on new optimized structure and dynam ic circuit technique im plem ented in 0 .2 5 μm CMOS digital technology is described.New optimized structure reduces the propagation delay and has higher operating speed.Based on this structure,an im proved D- flip- flop(DFF) using dynam ic circuit technique is proposed.A prototype is fabricated and the measured results show that this prescaler works well in gigahertz frequency range and consumes only35 m W(including three power- hungry output buffers) when the input frequency is2 .5 GHz and the power supply voltage is2 .5 V.Due to its excellent perform ance,the prescaler could be applied to many RF system s.展开更多
An integrated 3.3V/1.2V SC DC-DC converter operating under 10MHz with a fixed duty radio of 0.5 is presented.To improve the output current of the converter,CMOS technology is adopted to fabricate the switching devices...An integrated 3.3V/1.2V SC DC-DC converter operating under 10MHz with a fixed duty radio of 0.5 is presented.To improve the output current of the converter,CMOS technology is adopted to fabricate the switching devices,and mutually compensatory circuitry technology is also employed to double the output current furthermore.The simulation results using Hspice simulation software,show that the output currents of a single unit circuit and two unit circuits connected in a mutually compensatory manner of the improved converter is about 12.5mA and 26mA,respectively.The power conversion efficiency of the mutually compensatory circuit can amount to 73%,while its output voltage ripple is less than 1.5%.The converter is fabricated in standard Rohm 0.35μm CMOS technology in Tokyo University of Japan.The test result indicates that the output current of 9.8mA can be obtained from a single unit circuit of the improved converter.展开更多
The aim of this paper is to assess the impact of intellectual capital (IC) on firms' financial performance with reference to a sample of companies operating in the European Union (EU) area during the period from ...The aim of this paper is to assess the impact of intellectual capital (IC) on firms' financial performance with reference to a sample of companies operating in the European Union (EU) area during the period from 2006 to 2013. The analyses are further differentiated by country of domicile, industry sector, and historical period (pre-crisis and crisis). We investigate whether the value of the components of IC is a relevant factor that influences firms' performance, proposing and testing a modified version of the value added intellectual capital (VAICTM) model which also considers country-specific differences in terms of default risk. The empirical results evidence the relevance of the information on IC disclosed by companies. Differences arise depending on the reference country, industry, and historical period examined. The main limitations of the research are the unbalanced structure of the sample among countries and industries and the specificity of the examined sample (listed firms applying IAS/IFRS system). The main implication of the study is that, since we demonstrate the value relevance of IC, our findings could be of interest for standard setters for defining a standard (qualitative and quantitative) level of information on human resources to be disclosed by companies in their financial statements. Our contribution to the literature is the proposal of some relevant modifications to the original VAICTM model and providing new evidence on the influence that IC had in recent years on business performance in the EU.展开更多
Driven by an ever-increasing num- ber of new services and applications, transport networks have been undergoing significant changes. In this paper, we describe several ex- citing technology directions associated with ...Driven by an ever-increasing num- ber of new services and applications, transport networks have been undergoing significant changes. In this paper, we describe several ex- citing technology directions associated with future optical transport networks. We review the status of 100G, which is now commercially available and entering volume deployments, and its applications in China. Beyond 100G is considered as the primary technology for the expansion of both channel and fiber capacity in tile near term, and several enabling techniques are introduced. Then, key technologies, prod- ucts, and future evolutionary options of Optical Transport Networks (OTNs) are extensively discussed. Compared to fixed bandwidth and coarse granularity of current WDM network, a flexible grid architecture is a desirable evolu- tion trend, and key technologies and challenges are described. Finally, we illustrate the multi-dimension convergences in terms of IP and optical, Packet OTN (P-OTN), as well as Electronic Integrated Circuits (EICs) and Photonic Integrated Cimuits (PICs). Transport networks are therefore in the process of be- coming more broadband, robust, flexible, cost-effective and lower-power-consumptive.展开更多
A new type of single-walled carbon nanotube (SWNT) thin-film transistor (TFT) structure with a nanomesh network channel has been fabricated from a pre- separated semiconducting nanotube solution and simultaneously...A new type of single-walled carbon nanotube (SWNT) thin-film transistor (TFT) structure with a nanomesh network channel has been fabricated from a pre- separated semiconducting nanotube solution and simultaneously achieved both high uniformity and a high on/off ratio for application in large-scale integrated circuits. The nanomesh structure is prepared on a high-density SWNT network channel and enables a high on/off ratio while maintaining the excellent uniformity of the electrical properties of the SWNT TFTs. These effects are attributed to the effective elimination of metallic paths across the source/drain electrodes by forming the nanomesh structure in the high-density SWNT network channel. Therefore, our approach can serve as a critical foundation for future nanotube-based thin- film display electronics.展开更多
In the past three decades, molecular magnetism has been a rapidly growing interdisciplinary field in chemistry, phys- ics and materials sciences. It covers diverse range of topics including inorganic/organic/hybrid ma...In the past three decades, molecular magnetism has been a rapidly growing interdisciplinary field in chemistry, phys- ics and materials sciences. It covers diverse range of topics including inorganic/organic/hybrid magnetic molecular ma- terials, multifunctional and/or switchable magnetic molecu- lar materials, molecular nanomagnets, nanostructural mo- lecular magnets, molecular spintronics and biomagnetism. Much research on molecular magnetism has been carried out in China both before and after we organized the Interna- tional Conference on Molecule-Based Magnets 2010 (ICMM 2010) in Beijing.展开更多
文摘s:A divide- by- 12 8/ 12 9or6 4/ 6 5 dual- modulus prescaler based on new optimized structure and dynam ic circuit technique im plem ented in 0 .2 5 μm CMOS digital technology is described.New optimized structure reduces the propagation delay and has higher operating speed.Based on this structure,an im proved D- flip- flop(DFF) using dynam ic circuit technique is proposed.A prototype is fabricated and the measured results show that this prescaler works well in gigahertz frequency range and consumes only35 m W(including three power- hungry output buffers) when the input frequency is2 .5 GHz and the power supply voltage is2 .5 V.Due to its excellent perform ance,the prescaler could be applied to many RF system s.
文摘An integrated 3.3V/1.2V SC DC-DC converter operating under 10MHz with a fixed duty radio of 0.5 is presented.To improve the output current of the converter,CMOS technology is adopted to fabricate the switching devices,and mutually compensatory circuitry technology is also employed to double the output current furthermore.The simulation results using Hspice simulation software,show that the output currents of a single unit circuit and two unit circuits connected in a mutually compensatory manner of the improved converter is about 12.5mA and 26mA,respectively.The power conversion efficiency of the mutually compensatory circuit can amount to 73%,while its output voltage ripple is less than 1.5%.The converter is fabricated in standard Rohm 0.35μm CMOS technology in Tokyo University of Japan.The test result indicates that the output current of 9.8mA can be obtained from a single unit circuit of the improved converter.
文摘The aim of this paper is to assess the impact of intellectual capital (IC) on firms' financial performance with reference to a sample of companies operating in the European Union (EU) area during the period from 2006 to 2013. The analyses are further differentiated by country of domicile, industry sector, and historical period (pre-crisis and crisis). We investigate whether the value of the components of IC is a relevant factor that influences firms' performance, proposing and testing a modified version of the value added intellectual capital (VAICTM) model which also considers country-specific differences in terms of default risk. The empirical results evidence the relevance of the information on IC disclosed by companies. Differences arise depending on the reference country, industry, and historical period examined. The main limitations of the research are the unbalanced structure of the sample among countries and industries and the specificity of the examined sample (listed firms applying IAS/IFRS system). The main implication of the study is that, since we demonstrate the value relevance of IC, our findings could be of interest for standard setters for defining a standard (qualitative and quantitative) level of information on human resources to be disclosed by companies in their financial statements. Our contribution to the literature is the proposal of some relevant modifications to the original VAICTM model and providing new evidence on the influence that IC had in recent years on business performance in the EU.
基金supported by the National Natural Science Foundation of China under GrantNo. 61171076National 863 Project underGrant No. 2012AA011303National 973 Project under Grant No. 2010CB328200(2010CB328201)
文摘Driven by an ever-increasing num- ber of new services and applications, transport networks have been undergoing significant changes. In this paper, we describe several ex- citing technology directions associated with future optical transport networks. We review the status of 100G, which is now commercially available and entering volume deployments, and its applications in China. Beyond 100G is considered as the primary technology for the expansion of both channel and fiber capacity in tile near term, and several enabling techniques are introduced. Then, key technologies, prod- ucts, and future evolutionary options of Optical Transport Networks (OTNs) are extensively discussed. Compared to fixed bandwidth and coarse granularity of current WDM network, a flexible grid architecture is a desirable evolu- tion trend, and key technologies and challenges are described. Finally, we illustrate the multi-dimension convergences in terms of IP and optical, Packet OTN (P-OTN), as well as Electronic Integrated Circuits (EICs) and Photonic Integrated Cimuits (PICs). Transport networks are therefore in the process of be- coming more broadband, robust, flexible, cost-effective and lower-power-consumptive.
文摘A new type of single-walled carbon nanotube (SWNT) thin-film transistor (TFT) structure with a nanomesh network channel has been fabricated from a pre- separated semiconducting nanotube solution and simultaneously achieved both high uniformity and a high on/off ratio for application in large-scale integrated circuits. The nanomesh structure is prepared on a high-density SWNT network channel and enables a high on/off ratio while maintaining the excellent uniformity of the electrical properties of the SWNT TFTs. These effects are attributed to the effective elimination of metallic paths across the source/drain electrodes by forming the nanomesh structure in the high-density SWNT network channel. Therefore, our approach can serve as a critical foundation for future nanotube-based thin- film display electronics.
文摘In the past three decades, molecular magnetism has been a rapidly growing interdisciplinary field in chemistry, phys- ics and materials sciences. It covers diverse range of topics including inorganic/organic/hybrid magnetic molecular ma- terials, multifunctional and/or switchable magnetic molecu- lar materials, molecular nanomagnets, nanostructural mo- lecular magnets, molecular spintronics and biomagnetism. Much research on molecular magnetism has been carried out in China both before and after we organized the Interna- tional Conference on Molecule-Based Magnets 2010 (ICMM 2010) in Beijing.