期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于E-CNN和BLSTM-CRF的临床文本命名实体识别
被引量:
16
1
作者
曹春萍
关鹏举
《计算机应用研究》
CSCD
北大核心
2019年第12期3748-3751,共4页
在生物医学临床病历文本的命名实体识别任务中,传统的解决方案由于对实体的边界划分不够精确,影响了部分复合实体的识别。通过研究复合实体的特性,提出一种集成的卷积神经网络(E-CNN)模型与双向长短期记忆网络(BLSTM)和条件随机场(CRF)...
在生物医学临床病历文本的命名实体识别任务中,传统的解决方案由于对实体的边界划分不够精确,影响了部分复合实体的识别。通过研究复合实体的特性,提出一种集成的卷积神经网络(E-CNN)模型与双向长短期记忆网络(BLSTM)和条件随机场(CRF)结合的模型,通过对CNN中的卷积层设定不同卷积窗口的大小,来捕获多个词语之间更丰富的边界特征信息。然后将集成的特征信息传递给BLSTM模型进行训练,最后由CRF模型得到最终的序列标注。实验结果表明,该方法针对临床病历文本中的复合实体识别具有良好的效果。
展开更多
关键词
命名实体识别
临床文本
集成的卷积神经网络
下载PDF
职称材料
题名
基于E-CNN和BLSTM-CRF的临床文本命名实体识别
被引量:
16
1
作者
曹春萍
关鹏举
机构
上海理工大学光电信息与计算机工程学院
出处
《计算机应用研究》
CSCD
北大核心
2019年第12期3748-3751,共4页
基金
国家自然科学基金资助项目(61402288)
上海市自然科学基金资助项目(15ZR1429100)
文摘
在生物医学临床病历文本的命名实体识别任务中,传统的解决方案由于对实体的边界划分不够精确,影响了部分复合实体的识别。通过研究复合实体的特性,提出一种集成的卷积神经网络(E-CNN)模型与双向长短期记忆网络(BLSTM)和条件随机场(CRF)结合的模型,通过对CNN中的卷积层设定不同卷积窗口的大小,来捕获多个词语之间更丰富的边界特征信息。然后将集成的特征信息传递给BLSTM模型进行训练,最后由CRF模型得到最终的序列标注。实验结果表明,该方法针对临床病历文本中的复合实体识别具有良好的效果。
关键词
命名实体识别
临床文本
集成的卷积神经网络
Keywords
named entity recognition
clinical text
E-CNN
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于E-CNN和BLSTM-CRF的临床文本命名实体识别
曹春萍
关鹏举
《计算机应用研究》
CSCD
北大核心
2019
16
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部