期刊文献+
共找到53篇文章
< 1 2 3 >
每页显示 20 50 100
改进集成噪声重构经验模式分解的微弱时频特征增强方法及应用 被引量:8
1
作者 袁静 訾艳阳 +2 位作者 倪修华 李文杰 周郁 《机械工程学报》 EI CAS CSCD 北大核心 2016年第19期88-94,共7页
基于噪声利用机制,集成噪声重构经验模式分解方法(Ensemble noise-reconstructed empirical mode decomposition,ENEMD)利用原信号中固有噪声分量改善模式混淆现象,并通过固有噪声分量的相互抵消作用实现信号降噪。然而,该方法中关键噪... 基于噪声利用机制,集成噪声重构经验模式分解方法(Ensemble noise-reconstructed empirical mode decomposition,ENEMD)利用原信号中固有噪声分量改善模式混淆现象,并通过固有噪声分量的相互抵消作用实现信号降噪。然而,该方法中关键噪声估计技术采用类硬阈值处理方式,忽略系数之间相关性。为此,研究基于相邻系数降噪原理的ENEMD噪声估计技术,提高固有噪声分量估计的准确性。在此基础上,将改进ENEMD方法引入Hilbert-Huang变换中,提出改进ENEMD的微弱时频特征增强方法。该方法以无模式混淆的本征模式分量(Intrinsic mode function,IMF)准确表征微弱故障信号的瞬时频率,并以降噪IMF有效提高时频谱信噪比,消除时频谱中噪声杂点,显著提高信号时频表示的分辨率,增强微弱故障的时频表征并突显局部故障征兆,为机械早期和微弱故障识别提供有效手段。工程实例表明该方法有效揭示空气分离压缩机碰撞与摩擦故障征兆,并成功提取重油催化裂化机组早期微弱碰摩故障特征。 展开更多
关键词 集成噪声重构经验模式分解 HILBERT-HUANG变换 微弱特征增强 故障诊断
下载PDF
基于总体经验模式分解的地震信号随机噪声消除 被引量:15
2
作者 史恒 李桂林 +2 位作者 王伟 历玉英 高星 《地球物理学进展》 CSCD 北大核心 2011年第1期71-78,共8页
地震资料去噪是地震数据处理非常重要的步骤,现代地震勘探对地震资料信噪比的要求越来越高.总体经验模式分解(ensemble empirical mode decomposition,简写为EEMD)是一种新的时域信号处理方法 ,它是对经验模式分解(empirical mode decom... 地震资料去噪是地震数据处理非常重要的步骤,现代地震勘探对地震资料信噪比的要求越来越高.总体经验模式分解(ensemble empirical mode decomposition,简写为EEMD)是一种新的时域信号处理方法 ,它是对经验模式分解(empirical mode decomposition,简写为EMD)的一种改进.EEMD将目标信号经验地分解为几个被称为本征模态函数(intrinsic mode function,简写为IMF)的子信号,它是一个自适应的带通滤波器组.本文介绍了EMD和EEMD分解的基本原理,提出了一种基于EEMD分解的地震信号随机噪声消除的方法 .本文利用含噪信号EEMD分解后其有效信号和随机噪声在IMF中差异分布的特点,给出一种地震信号随机噪声消除的新方法 . 展开更多
关键词 经验模式分解(EMD) 总体经验模式分解(eemd) 随机噪声 去噪
下载PDF
基于集总经验模式分解和支持向量机的液压泵故障预测研究 被引量:12
3
作者 田海雷 李洪儒 许葆华 《中国机械工程》 EI CAS CSCD 北大核心 2013年第7期926-931,共6页
液压泵的性能直接影响整个液压系统的正常工作,为此需要对其进行状态监测和故障预测。采集液压泵的振动信号,运用集总经验模式分解(EEMD)和平滑能量算子解调相结合的方法进行包络解调;采取小波包分析方法得到了故障特征向量;在研究支持... 液压泵的性能直接影响整个液压系统的正常工作,为此需要对其进行状态监测和故障预测。采集液压泵的振动信号,运用集总经验模式分解(EEMD)和平滑能量算子解调相结合的方法进行包络解调;采取小波包分析方法得到了故障特征向量;在研究支持向量机回归估计基本原理的基础上,建立了小波包分解和支持向量机相结合的预测模型。采用液压泵历史数据对模型进行了验证,结果表明,基于支持向量机的预测模型和故障映射模型可以有效地对液压泵进行故障预测。 展开更多
关键词 集总经验模式分解(eemd) 能量算子 小波包 支持向量机 液压泵
下载PDF
基于混合经验模式分解的水轮机压力脉动分析 被引量:3
4
作者 蒲桂林 周建中 +2 位作者 李超顺 李静 肖剑 《水力发电》 北大核心 2013年第12期57-60,71,共5页
针对水轮机尾水管压力脉动信号的非平稳性以及经验模式分解(EMD)和集成平均经验模式分解(EEMD)的一些重要缺陷,以虚假分量识别和信号重构为基础,提出了一种混合经验模式分解方法。分别以仿真信号和某混流式水轮机尾水管压力脉动信号为例... 针对水轮机尾水管压力脉动信号的非平稳性以及经验模式分解(EMD)和集成平均经验模式分解(EEMD)的一些重要缺陷,以虚假分量识别和信号重构为基础,提出了一种混合经验模式分解方法。分别以仿真信号和某混流式水轮机尾水管压力脉动信号为例,验证了该方法相对于EMD和EEMD的优势。 展开更多
关键词 水轮机 压力脉动 经验模式分解 集成平均经验模式分解 模态混叠 信号分析 特征提取
下载PDF
一种集成经验模态分解的样本熵阈值微地震信号降噪方法 被引量:9
5
作者 王亚娟 李怀良 +1 位作者 庹先国 沈统 《物探与化探》 CAS 北大核心 2019年第5期1083-1089,共7页
微地震信号的采集过程中,会不可避免地混合非平稳随机噪声,传统的线性滤波和频谱分析方法对这种混合信号的去噪效果并不理想。针对这一需求,本文提出了一种新的降噪方法。首先对含噪声的微地震信号执行集成经验模态分解(EEMD),获取一系... 微地震信号的采集过程中,会不可避免地混合非平稳随机噪声,传统的线性滤波和频谱分析方法对这种混合信号的去噪效果并不理想。针对这一需求,本文提出了一种新的降噪方法。首先对含噪声的微地震信号执行集成经验模态分解(EEMD),获取一系列不同频率成分的本征模态函数(IMF);为了区分这些IMF分量中的信号和噪声,文中通过计算各个IMF分量的样本熵,根据所设置的样本熵阈值来提取符合微地震信号特征的IMF分量,并对这些IMF分量进行信号重构,由此达到抑制随机噪声的目的。将提出的方法应用于模拟数据和实测微地震数据,均表明该方法具有理想的降噪效果。 展开更多
关键词 微地震信号 集成经验模态分解(eemd) 样本熵 降噪
下载PDF
集成全息希尔伯特谱分析及其在滚动轴承故障诊断中的应用
6
作者 彭国良 郑近德 +2 位作者 潘海洋 童靳于 刘庆运 《振动与冲击》 EI CSCD 北大核心 2024年第13期98-105,125,共9页
全息希尔伯特谱分析(holo-Hilbert spectral analysis, HHSA)是一种新的信号解调分析处理技术,其采用双层经验模态分解(empirical mode decomposition, EMD),能够有效揭示非线性或非平稳振动信号中的跨尺度耦合关系。但是,EMD在信号分... 全息希尔伯特谱分析(holo-Hilbert spectral analysis, HHSA)是一种新的信号解调分析处理技术,其采用双层经验模态分解(empirical mode decomposition, EMD),能够有效揭示非线性或非平稳振动信号中的跨尺度耦合关系。但是,EMD在信号分解过程中存在严重的模态混叠问题,导致瞬时频率估计不准确,影响了HHSA的分析精度。基于此,提出了集成全息希尔伯特谱分析(ensemble holo-Hilbert spectral analysis, EHHSA)方法。同时为了更精确解调故障特征信息,通过对载波变量进行积分,定义了一种可以揭示调制特征的调幅边际谱分析方法。最后,通过对滚动轴承仿真和实测数据进行分析,结果表明:与传统谱分析方法相比,所提EHHSA方法及调幅边际谱的特征提取性能和噪声鲁棒性更强。 展开更多
关键词 集成全息希尔伯特谱分析(EHHSA) 时频分析 集成经验模态分解(eemd) 故障诊断
下载PDF
基于HOSVD局部重组的利噪抑噪经验模式分解及应用
7
作者 袁静 罗亮洁 +2 位作者 翁艺航 宋志天 许冲 《上海航天(中英文)》 CSCD 2022年第6期51-58,共8页
及时准确地识别航天机构萌生和发展的损伤故障特征信息,可为机构故障诊断评估、科学任务调整以及未来在轨维修提供科学决策依据。集成噪声重构经验模式分解(ENEMD)及其衍生方法都是基于噪声利用机制以原信号中估计噪声改善模式混淆并实... 及时准确地识别航天机构萌生和发展的损伤故障特征信息,可为机构故障诊断评估、科学任务调整以及未来在轨维修提供科学决策依据。集成噪声重构经验模式分解(ENEMD)及其衍生方法都是基于噪声利用机制以原信号中估计噪声改善模式混淆并实现信号降噪。然而,该方法中奇异值拐点难以获取、阈值处理中噪声不连续等带来的噪声估计偏差,将降低微弱特征提取准确性。为此,提出一种基于高阶奇异值分解(HOSVD)局部重组的噪声估计技术。研究基于滑动窗截断和Hankel矩阵相结合的张量构建,然后将奇异值曲率谱上的最大峰值点作为合理奇异阶,最后根据选取的奇异阶重构张量分解模型得到所需的估计噪声分量。在此基础上,将HOSVD局部重组引入ENEMD方法中,提出利噪抑噪经验模式分解方法。该方法可进一步提高微弱噪声估计精确度,实现对航天机构损伤微弱特征的增强提取。仿真分析和某航天轴承试验案例验证了该方法在损伤微弱特征提取和识别上具有实用性与有效性。 展开更多
关键词 集成噪声重构经验模式分解(ENEMD) 张量 高阶奇异值分解(HOSVD) 噪声估计 航天故障诊断
下载PDF
上证基金指数波动结构分解与短期预测:基于EEMD模型 被引量:4
8
作者 何凯 苏梽芳 何卫平 《金融理论与实践》 北大核心 2014年第1期80-85,共6页
上证基金指数反映了基金市场的整体变动情况,研究其波动结构特征对基金市场参与者具有重要作用。研究结果表明:(1)上证基金指数序列可由经济基本面决定的趋势项、重大事件带来的低频分量和短期不均衡导致的高频分量构成,而且趋势项主导... 上证基金指数反映了基金市场的整体变动情况,研究其波动结构特征对基金市场参与者具有重要作用。研究结果表明:(1)上证基金指数序列可由经济基本面决定的趋势项、重大事件带来的低频分量和短期不均衡导致的高频分量构成,而且趋势项主导上证基金指数的长期走势,低频分量在中期对该指数有较大影响,而高频分量的影响可忽略不计;(2)与直接SVM预测法相比,EEMD-SVM组合预测法有更高的预测精度,说明EEMD分解得到的各结构分量有效地刻画了上证基金指数的内在运行特征。 展开更多
关键词 证券市场 集成经验模态分解 本征模态函数 支持向量机 上证基金指数 ENSEMBLE empirical MODE decomposition (eemd) INTRINSIC MODE function (IMF) support VECTOR machine (SVM)
下载PDF
基于CEEMDAN-IPSO-LSTM的城市轨道交通短时客流预测方法研究 被引量:3
9
作者 曾璐 李紫诺 +1 位作者 杨杰 许心越 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2023年第9期3273-3286,共14页
消除客流数据随机噪声和确定神经网络超参数是城市轨道交通短时客流预测组合模型需要解决的关键问题。基于弱化客流数据噪声的自适应噪声完全集成经验模式分解算法(CEEMDAN)将客流时序数据分解为若干个频率和复杂度均不同的固有模态函... 消除客流数据随机噪声和确定神经网络超参数是城市轨道交通短时客流预测组合模型需要解决的关键问题。基于弱化客流数据噪声的自适应噪声完全集成经验模式分解算法(CEEMDAN)将客流时序数据分解为若干个频率和复杂度均不同的固有模态函数分量和剩余分量后,利用引入自适应策略的改进粒子群算法(IPSO)动态求解长短期记忆神经网络(LSTM)超参数的最优值,构建CEEMDAN-IPSO-LSTM组合模型预测城市轨道交通短时客流量。以广州地铁杨箕站自动售检票系统采集的历史进(出)站客流数据为例进行实验,研究结果表明:IPSO算法较PSO算法在基准测试函数Sphere,Sum Squars,Sum of Different Power,Rosenbrock,Rastigrin,Ackley,Griewank和Penalized上的最小值、最大值、平均值和标准差均更接近最佳优化值,CEEMDAN-IPSO-LSTM模型较LSTM模型、CEEMDAN-LSTM模型、CEEMDAN-PSO-LSTM模型的全月全日进(出)站的预测误差评价指标SD,RMSE,MAE和MAPE分别降低了12~40人次(13~35人次)、13~44人次(12~35人次)、6~37人次(12~31人次)和5.08%~46.89%(6.5%~35.1%),R和R2分别提高了0.07%~2.32%(0.86%~3.63%)和0.13%~2.19%(0.67%~1.67%),同时在工作日不同时段和非工作日全日的预测性能均达到最优效果。IPSO算法的收敛速度和参数寻优精度均优于PSO算法,且CEEMDAN-IPSO-LSTM模型可应用于城市轨道交通短时客流量的精确预测,同时可为设计规划线网路线、缓解交通压力、提高乘客出行服务质量等提供基础数据支撑。 展开更多
关键词 城市轨道交通 短时客流预测 自适应噪声完全集成经验模式分解算法 改进粒子群算法 长短期记忆神经网络 组合模型 CeemdAN-IPSO-LSTM
下载PDF
基于ICEEMDAN-ICSSA-CKELM-TCCA的短期风电功率预测研究
10
作者 韦权 汤占军 贺建峰 《现代电子技术》 2023年第24期39-46,共8页
为了提高风电功率预测的准确性,基于信号分解、优化算法和误差修正,提出一种ICEEMDAN-ICSSA-CKELMTCCA的风电功率预测组合模型。首先采用改进的带自适应噪声的完全集成经验模式分解(ICEEMDAN)和样本熵原理,对原始功率序列进行分解和重构... 为了提高风电功率预测的准确性,基于信号分解、优化算法和误差修正,提出一种ICEEMDAN-ICSSA-CKELMTCCA的风电功率预测组合模型。首先采用改进的带自适应噪声的完全集成经验模式分解(ICEEMDAN)和样本熵原理,对原始功率序列进行分解和重构,得到更适合提取特征的新序列。然后,建立包含Poly核函数、RBF核函数的组合核极限学习机(CKELM)对新的序列进行初步预测,并利用融合了Tent混沌映射、动态惯性权重和自适应t变异策略的改进混沌麻雀搜索算法(ICSSA)对其参数进行优化,提升CKELM预测性能。最后将时间卷积网络(TCN)与高效通道注意力机制(ECA)组合搭建为TCCA模型,对初步预测结果进行修正。以中国云南省某风电场的数据为例进行多组实验,结果表明该模型针对风电功率具有较高的预测精度。 展开更多
关键词 短期风电功率预测 自适应噪声的完全集成经验模式分解 混沌麻雀搜索算法 组合核极限学习机 样本熵 时间卷积网络
下载PDF
考虑时序二维变化的日前市场电价预测模型 被引量:1
11
作者 陈宇聪 白晓清 《电力系统及其自动化学报》 CSCD 北大核心 2024年第7期22-29,共8页
电价预测对电力市场参与者的运营决策及电力系统安全稳定运行关系重大。针对日前市场电价预测问题,本文提出一种考虑时序二维变化的日前市场电价预测模型和方法。首先采用改进的带自适应噪声的完全集成经验模式分解对日前市场电价历史... 电价预测对电力市场参与者的运营决策及电力系统安全稳定运行关系重大。针对日前市场电价预测问题,本文提出一种考虑时序二维变化的日前市场电价预测模型和方法。首先采用改进的带自适应噪声的完全集成经验模式分解对日前市场电价历史数据进行分解,然后对其高、低频子序列分别采用考虑时序二维变化的Ti⁃mesNet和基于统计分析的差分自回归移动平均进行预测,二者结果之和构成日前市场电价的预测值。仿真结果表明,所提方法相较于现有单一或组合模型具有较高的预测精度。 展开更多
关键词 日前市场电价预测 完全集成经验模式分解 差分自回归移动平均 TimesNet 时序二维变化
下载PDF
基于EEMD样本熵和GK模糊聚类的机械故障识别 被引量:31
12
作者 王书涛 李亮 +1 位作者 张淑清 孙国秀 《中国机械工程》 EI CAS CSCD 北大核心 2013年第22期3036-3040,3044,共6页
针对目前各种机械故障诊断方法的局限性,提出了基于总体平均经验模式分解(EEMD)样本熵和GK模糊聚类的故障特征提取和分类方法,建立了一种机械故障准确识别的有效途径。首先,对机械振动信号进行EEMD分解,得到若干不同时间尺度的固有模态... 针对目前各种机械故障诊断方法的局限性,提出了基于总体平均经验模式分解(EEMD)样本熵和GK模糊聚类的故障特征提取和分类方法,建立了一种机械故障准确识别的有效途径。首先,对机械振动信号进行EEMD分解,得到若干不同时间尺度的固有模态函数(IMF)分量。其次,通过相关性分析和能量相结合的准则对IMF分量进行筛选,并将筛选出的IMF分量的样本熵组成故障特征向量。最后,将构造的特征向量输入到GK模糊聚类分类器中进行聚类识别。实验及工程实例证明了该方法的有效性和优越性。 展开更多
关键词 总体平均经验模式分解(eemd) 样本熵 GK模糊聚类 机械故障识别
下载PDF
大型旋转机械非平稳振动信号的EEMD降噪方法 被引量:67
13
作者 曹冲锋 杨世锡 杨将新 《振动与冲击》 EI CSCD 北大核心 2009年第9期33-38,共6页
针对现有各种降噪方法处理非平稳机械振动信号存在的缺点,提出一种基于辅助白噪声经验模式分解技术来自适应实现旋转机械非平稳振动信号降噪。该方法是一种集成的经验模式分解(Ensemble Empirical mode decomposition,EEMD)降噪算法,利... 针对现有各种降噪方法处理非平稳机械振动信号存在的缺点,提出一种基于辅助白噪声经验模式分解技术来自适应实现旋转机械非平稳振动信号降噪。该方法是一种集成的经验模式分解(Ensemble Empirical mode decomposition,EEMD)降噪算法,利用正态分布白噪声在经验模式分解中具有的二进尺度分解特性,可以有效抑制常规经验模式分解降噪算法处理非平稳振动信号时产生的模式混叠现象。通过仿真计算和转子启动过程试验振动信号对新降噪方法、经验模式分解降噪方法及小波降噪方法的性能进行了比较测试,结果表明,在非平稳机械振动信号降噪方面,新降噪方法具有更高的信噪比,不仅能够消除高斯噪声,而且能够有效降低脉冲干扰,提取出反映信号实际物理意义的振动固有模式。 展开更多
关键词 降噪 旋转机械 启动过程 振动信号 集成经验模式分解
下载PDF
基于EEMD与时间序列法的短期风电场功率预测 被引量:14
14
作者 常鹏 高亚静 +1 位作者 张琳 李均强 《电力科学与工程》 2012年第3期33-39,共7页
随着风力发电技术的发展,风电已成为最主要的新能源发电方式。但因风的随机性造成的风场输出功率的随机波动,电网将面对备用容量增多、调度难度增大以及风电场弃风等问题。解决上述问题的有效途径之一就是对风电场输出功率进行准确预测... 随着风力发电技术的发展,风电已成为最主要的新能源发电方式。但因风的随机性造成的风场输出功率的随机波动,电网将面对备用容量增多、调度难度增大以及风电场弃风等问题。解决上述问题的有效途径之一就是对风电场输出功率进行准确预测。针对风电场功率时间序列的非线性和非平稳性,分别将EMD和EEMD方法与时间序列的方法相结合应用于风电场功率预测中,提出基于EMD-ARMA和EEMD-ARMA的风功率预测方法。采用某风电场的实际功率数据进行分析预测,预测结果验证了所提方法的正确性和有效性。 展开更多
关键词 短期风功率预测 经验模式分解(EMD) 集合经验模式分解(eemd) 时间序列法(ARMA)
下载PDF
基于EEMD-多尺度主元分析的回转支承信号降噪方法研究 被引量:9
15
作者 杨杰 陈捷 +2 位作者 洪荣晶 王华 封杨 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第4期1173-1180,共8页
为较好地提取故障信号,提出一种集成经验模式分解(EEMD)和主元分析相结合的降噪方法,给出EEMD自适应分解后本征模函数(IMF)的选择方法,将提取出的IMF分量进行信号重构,从而达到降噪目的。将多尺度主元分析的EEMD降噪、基于峭度准则的EEM... 为较好地提取故障信号,提出一种集成经验模式分解(EEMD)和主元分析相结合的降噪方法,给出EEMD自适应分解后本征模函数(IMF)的选择方法,将提取出的IMF分量进行信号重构,从而达到降噪目的。将多尺度主元分析的EEMD降噪、基于峭度准则的EEMD降噪以及基于相关系数准则的EEMD降噪方法分别对仿真信号和回转支承故障信号降噪性能进行对比。研究结果表明:基于多尺度主元分析的EEMD降噪方法具有更高的信噪比(SNR),提取出更能反映真实故障信息的特征,具有一定的实际工程应用价值。 展开更多
关键词 回转支承 主元分析 集成经验模式分解 滤波 振动信号
下载PDF
EEMD能量熵与优化LS-SVM的滚动轴承故障诊断 被引量:13
16
作者 陈法法 李冕 +1 位作者 陈保家 陈从平 《组合机床与自动化加工技术》 北大核心 2016年第12期71-75,共5页
针对滚动轴承振动故障信号非平稳、非线性难以有效诊断的问题,提出基于集成经验模式分解(ensemble empirical mode decomposition,EEMD)能量熵与优化最小二乘支持向量机(least square support vector machine,LS-SVM)的滚动轴承故障诊... 针对滚动轴承振动故障信号非平稳、非线性难以有效诊断的问题,提出基于集成经验模式分解(ensemble empirical mode decomposition,EEMD)能量熵与优化最小二乘支持向量机(least square support vector machine,LS-SVM)的滚动轴承故障诊断方法。首先利用EEMD对滚动轴承的振动故障信号进行分解,得到各阶的内禀模态函数分量(IMF)并计算其能量构造成特征向量矩阵,随后将该特征向量矩阵输入给优化的LS-SVM进行故障模式的分类辨识。通过实验验证了该方法的有效性和可行性,结果表明,基于EEMD能量熵特征与优化LS-SVM的滚动轴承故障诊断方法能够有效的诊断滚动轴承的实际运行工况。 展开更多
关键词 集成经验模式分解 最小二乘支持向量机 滚动轴承 故障诊断
下载PDF
高速列车万向轴动不平衡检测的EEMD-Hankel-SVD方法 被引量:9
17
作者 丁建明 林建辉 赵洁 《机械工程学报》 EI CAS CSCD 北大核心 2015年第10期143-151,159,共10页
针对聚合经验模式分解(Ensemble empirical model decomposition,EEMD)的等效滤波特性依然存在模式分量间频带重叠较大的根本缺陷,提出一种高速列车万向轴动不平衡动态检测的新方法。该方法的核心是对万向节安装机座的振动信号进行EEMD... 针对聚合经验模式分解(Ensemble empirical model decomposition,EEMD)的等效滤波特性依然存在模式分量间频带重叠较大的根本缺陷,提出一种高速列车万向轴动不平衡动态检测的新方法。该方法的核心是对万向节安装机座的振动信号进行EEMD分解得到基本模式分量,应用基本模式分量信号来构造Hankel矩阵,对该矩阵进行正交化奇异值(Singular value decomposition,SVD)分解,以奇异值关键叠层作为奇异值的选择准则对信号进行重构,应用重构信号的傅里叶谱来检测高速列车万向轴的动不平衡,消除EEMD分解模式频带重叠对故障特征的淹没和混淆效应,提高了谱的清晰度,凸显了故障特征。应用万向轴动不平衡试验数据对该方法进行试验验证,结果表明,该方法能够有效检测万向轴动不平衡引起的故障特征和万向轴的固有振动特征,与纯EEMD方法相比,该方法在谱的清晰度和故障表征力上得到了显著提高。 展开更多
关键词 高速列车 万向轴动不平衡 聚合经验模式分解(Ensemble empirical model decomposition eemd) HANKEL矩阵 正交化奇异值(Singular value decomposition SVD) 动态检测
下载PDF
基于EEMD气液两相流差压信号时频分析 被引量:5
18
作者 孙斌 刘彤 赵鹏 《实验流体力学》 CAS CSCD 北大核心 2014年第5期47-52,共6页
为研究气液两相流流动过程的动态特性,采用V形内锥作为测量装置,通过高频差压变送器获得不同流型下的动态信号,提出了一种基于总体平均经验模式分解(EEMD)的气液两相流时频分析方法。通过对不同流型下的气液两相流的差压信号进行分析,... 为研究气液两相流流动过程的动态特性,采用V形内锥作为测量装置,通过高频差压变送器获得不同流型下的动态信号,提出了一种基于总体平均经验模式分解(EEMD)的气液两相流时频分析方法。通过对不同流型下的气液两相流的差压信号进行分析,研究了气液两相流的流动机理,为气液两相流流型及流量的准确测量奠定理论基础。分析发现EEMD的抗混分解能力很好,可以准确地提取两相流差压信号的频率成分及其时变情况,为今后两相流的识别提供理论基础,具有较高的工程应用价值。 展开更多
关键词 总体平均经验模式分解(eemd) 气液两相流 时频分析 两相流流型
下载PDF
EEMD能量熵和奇异值熵与SVM融合的船用空压机故障诊断 被引量:7
19
作者 王永坚 胡欢欢 李品芳 《上海海事大学学报》 北大核心 2020年第4期95-102,共8页
针对船用往复式二级空压机振动信号非线性、非平稳性问题,利用振动信号辨识故障,综合集成经验模态分解(ensemble empirical mode decomposition,EEMD)和支持向量机(support vector machine,SVM)的信号处理优势,提出一种将EEMD能量熵和... 针对船用往复式二级空压机振动信号非线性、非平稳性问题,利用振动信号辨识故障,综合集成经验模态分解(ensemble empirical mode decomposition,EEMD)和支持向量机(support vector machine,SVM)的信号处理优势,提出一种将EEMD能量熵和奇异值熵与SVM融合的船用空压机故障诊断方法。模拟正常状态和4种故障状态进行故障诊断实验。采集的振动信号用小波降噪法进行处理。为模拟船用空压机实际工作环境,在EEMD处理过程中加入加性高斯白噪声(信噪比7.5 dB)。以相关性为评价指标选取各状态下本征模态函数(intrinsic mode function,IMF),并以每个IMF的能量熵和奇异值熵作为特征值,采用SVM分类器识别故障。实验表明:与基于经验模态分解(empirical mode decomposition,EMD)和SVM等故障诊断方法相比,该方法能更有效地识别故障。该方法在实船应用中获得较好的诊断效果,可为现代船舶智能故障诊断研究提供参考。 展开更多
关键词 船用往复式二级空压机 集成经验模态分解(eemd) eemd能量熵和奇异值熵 支持向量机(SVM) 故障诊断
下载PDF
基于自适应EEMD的风电机组联轴器松动故障诊断 被引量:2
20
作者 李国英 王诗彬 陈雪峰 《振动.测试与诊断》 EI CSCD 北大核心 2022年第2期292-298,407,408,共9页
联轴器是风电机组高速旋转齿轮箱和发电机之间的唯一机械连接件,针对联轴器松动后存在振动信号微弱、干扰大、故障特征难以识别的难题,提出了一种以协同信噪比(collaborative signal-to-noise ratio index,简称CSNR)为测度指标的自适应... 联轴器是风电机组高速旋转齿轮箱和发电机之间的唯一机械连接件,针对联轴器松动后存在振动信号微弱、干扰大、故障特征难以识别的难题,提出了一种以协同信噪比(collaborative signal-to-noise ratio index,简称CSNR)为测度指标的自适应集成经验模式分解(ensemble empirical mode decomposition,简称EEMD)故障诊断方法。将该方法应用于数值仿真信号,实现了仿真信号构成分量的准确分离;应用于风场风电机组联轴器的松动故障诊断,有效提取了联轴器松动强噪声微弱信号中的故障特征,验证了该方法在工程实际应用中的有效性和实用性。 展开更多
关键词 集成经验模式分解 风电机组 故障诊断 振动信号
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部