消除客流数据随机噪声和确定神经网络超参数是城市轨道交通短时客流预测组合模型需要解决的关键问题。基于弱化客流数据噪声的自适应噪声完全集成经验模式分解算法(CEEMDAN)将客流时序数据分解为若干个频率和复杂度均不同的固有模态函...消除客流数据随机噪声和确定神经网络超参数是城市轨道交通短时客流预测组合模型需要解决的关键问题。基于弱化客流数据噪声的自适应噪声完全集成经验模式分解算法(CEEMDAN)将客流时序数据分解为若干个频率和复杂度均不同的固有模态函数分量和剩余分量后,利用引入自适应策略的改进粒子群算法(IPSO)动态求解长短期记忆神经网络(LSTM)超参数的最优值,构建CEEMDAN-IPSO-LSTM组合模型预测城市轨道交通短时客流量。以广州地铁杨箕站自动售检票系统采集的历史进(出)站客流数据为例进行实验,研究结果表明:IPSO算法较PSO算法在基准测试函数Sphere,Sum Squars,Sum of Different Power,Rosenbrock,Rastigrin,Ackley,Griewank和Penalized上的最小值、最大值、平均值和标准差均更接近最佳优化值,CEEMDAN-IPSO-LSTM模型较LSTM模型、CEEMDAN-LSTM模型、CEEMDAN-PSO-LSTM模型的全月全日进(出)站的预测误差评价指标SD,RMSE,MAE和MAPE分别降低了12~40人次(13~35人次)、13~44人次(12~35人次)、6~37人次(12~31人次)和5.08%~46.89%(6.5%~35.1%),R和R2分别提高了0.07%~2.32%(0.86%~3.63%)和0.13%~2.19%(0.67%~1.67%),同时在工作日不同时段和非工作日全日的预测性能均达到最优效果。IPSO算法的收敛速度和参数寻优精度均优于PSO算法,且CEEMDAN-IPSO-LSTM模型可应用于城市轨道交通短时客流量的精确预测,同时可为设计规划线网路线、缓解交通压力、提高乘客出行服务质量等提供基础数据支撑。展开更多
针对聚合经验模式分解(Ensemble empirical model decomposition,EEMD)的等效滤波特性依然存在模式分量间频带重叠较大的根本缺陷,提出一种高速列车万向轴动不平衡动态检测的新方法。该方法的核心是对万向节安装机座的振动信号进行EEMD...针对聚合经验模式分解(Ensemble empirical model decomposition,EEMD)的等效滤波特性依然存在模式分量间频带重叠较大的根本缺陷,提出一种高速列车万向轴动不平衡动态检测的新方法。该方法的核心是对万向节安装机座的振动信号进行EEMD分解得到基本模式分量,应用基本模式分量信号来构造Hankel矩阵,对该矩阵进行正交化奇异值(Singular value decomposition,SVD)分解,以奇异值关键叠层作为奇异值的选择准则对信号进行重构,应用重构信号的傅里叶谱来检测高速列车万向轴的动不平衡,消除EEMD分解模式频带重叠对故障特征的淹没和混淆效应,提高了谱的清晰度,凸显了故障特征。应用万向轴动不平衡试验数据对该方法进行试验验证,结果表明,该方法能够有效检测万向轴动不平衡引起的故障特征和万向轴的固有振动特征,与纯EEMD方法相比,该方法在谱的清晰度和故障表征力上得到了显著提高。展开更多
联轴器是风电机组高速旋转齿轮箱和发电机之间的唯一机械连接件,针对联轴器松动后存在振动信号微弱、干扰大、故障特征难以识别的难题,提出了一种以协同信噪比(collaborative signal-to-noise ratio index,简称CSNR)为测度指标的自适应...联轴器是风电机组高速旋转齿轮箱和发电机之间的唯一机械连接件,针对联轴器松动后存在振动信号微弱、干扰大、故障特征难以识别的难题,提出了一种以协同信噪比(collaborative signal-to-noise ratio index,简称CSNR)为测度指标的自适应集成经验模式分解(ensemble empirical mode decomposition,简称EEMD)故障诊断方法。将该方法应用于数值仿真信号,实现了仿真信号构成分量的准确分离;应用于风场风电机组联轴器的松动故障诊断,有效提取了联轴器松动强噪声微弱信号中的故障特征,验证了该方法在工程实际应用中的有效性和实用性。展开更多
文摘消除客流数据随机噪声和确定神经网络超参数是城市轨道交通短时客流预测组合模型需要解决的关键问题。基于弱化客流数据噪声的自适应噪声完全集成经验模式分解算法(CEEMDAN)将客流时序数据分解为若干个频率和复杂度均不同的固有模态函数分量和剩余分量后,利用引入自适应策略的改进粒子群算法(IPSO)动态求解长短期记忆神经网络(LSTM)超参数的最优值,构建CEEMDAN-IPSO-LSTM组合模型预测城市轨道交通短时客流量。以广州地铁杨箕站自动售检票系统采集的历史进(出)站客流数据为例进行实验,研究结果表明:IPSO算法较PSO算法在基准测试函数Sphere,Sum Squars,Sum of Different Power,Rosenbrock,Rastigrin,Ackley,Griewank和Penalized上的最小值、最大值、平均值和标准差均更接近最佳优化值,CEEMDAN-IPSO-LSTM模型较LSTM模型、CEEMDAN-LSTM模型、CEEMDAN-PSO-LSTM模型的全月全日进(出)站的预测误差评价指标SD,RMSE,MAE和MAPE分别降低了12~40人次(13~35人次)、13~44人次(12~35人次)、6~37人次(12~31人次)和5.08%~46.89%(6.5%~35.1%),R和R2分别提高了0.07%~2.32%(0.86%~3.63%)和0.13%~2.19%(0.67%~1.67%),同时在工作日不同时段和非工作日全日的预测性能均达到最优效果。IPSO算法的收敛速度和参数寻优精度均优于PSO算法,且CEEMDAN-IPSO-LSTM模型可应用于城市轨道交通短时客流量的精确预测,同时可为设计规划线网路线、缓解交通压力、提高乘客出行服务质量等提供基础数据支撑。
文摘针对聚合经验模式分解(Ensemble empirical model decomposition,EEMD)的等效滤波特性依然存在模式分量间频带重叠较大的根本缺陷,提出一种高速列车万向轴动不平衡动态检测的新方法。该方法的核心是对万向节安装机座的振动信号进行EEMD分解得到基本模式分量,应用基本模式分量信号来构造Hankel矩阵,对该矩阵进行正交化奇异值(Singular value decomposition,SVD)分解,以奇异值关键叠层作为奇异值的选择准则对信号进行重构,应用重构信号的傅里叶谱来检测高速列车万向轴的动不平衡,消除EEMD分解模式频带重叠对故障特征的淹没和混淆效应,提高了谱的清晰度,凸显了故障特征。应用万向轴动不平衡试验数据对该方法进行试验验证,结果表明,该方法能够有效检测万向轴动不平衡引起的故障特征和万向轴的固有振动特征,与纯EEMD方法相比,该方法在谱的清晰度和故障表征力上得到了显著提高。